Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{4x^{2}-9x+5}\right)^{2}-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}+\left(\sqrt{2x^{2}-x-1}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}\right)^{2}.
4x^{2}-9x+5-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}+\left(\sqrt{2x^{2}-x-1}\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate \sqrt{4x^{2}-9x+5} to the power of 2 and get 4x^{2}-9x+5.
4x^{2}-9x+5-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}+2x^{2}-x-1=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate \sqrt{2x^{2}-x-1} to the power of 2 and get 2x^{2}-x-1.
6x^{2}-9x+5-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}-x-1=\left(\sqrt{x^{2}-1}\right)^{2}
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-10x+5-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}-1=\left(\sqrt{x^{2}-1}\right)^{2}
Combine -9x and -x to get -10x.
6x^{2}-10x+4-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=\left(\sqrt{x^{2}-1}\right)^{2}
Subtract 1 from 5 to get 4.
6x^{2}-10x+4-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=x^{2}-1
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=x^{2}-1-\left(6x^{2}-10x+4\right)
Subtract 6x^{2}-10x+4 from both sides of the equation.
-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=x^{2}-1-6x^{2}+10x-4
To find the opposite of 6x^{2}-10x+4, find the opposite of each term.
-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=-5x^{2}-1+10x-4
Combine x^{2} and -6x^{2} to get -5x^{2}.
-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}=-5x^{2}-5+10x
Subtract 4 from -1 to get -5.
\left(-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}\right)^{2}=\left(-5x^{2}-5+10x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{4x^{2}-9x+5}\right)^{2}\left(\sqrt{2x^{2}-x-1}\right)^{2}=\left(-5x^{2}-5+10x\right)^{2}
Expand \left(-2\sqrt{4x^{2}-9x+5}\sqrt{2x^{2}-x-1}\right)^{2}.
4\left(\sqrt{4x^{2}-9x+5}\right)^{2}\left(\sqrt{2x^{2}-x-1}\right)^{2}=\left(-5x^{2}-5+10x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(4x^{2}-9x+5\right)\left(\sqrt{2x^{2}-x-1}\right)^{2}=\left(-5x^{2}-5+10x\right)^{2}
Calculate \sqrt{4x^{2}-9x+5} to the power of 2 and get 4x^{2}-9x+5.
4\left(4x^{2}-9x+5\right)\left(2x^{2}-x-1\right)=\left(-5x^{2}-5+10x\right)^{2}
Calculate \sqrt{2x^{2}-x-1} to the power of 2 and get 2x^{2}-x-1.
\left(16x^{2}-36x+20\right)\left(2x^{2}-x-1\right)=\left(-5x^{2}-5+10x\right)^{2}
Use the distributive property to multiply 4 by 4x^{2}-9x+5.
32x^{4}-88x^{3}+60x^{2}+16x-20=\left(-5x^{2}-5+10x\right)^{2}
Use the distributive property to multiply 16x^{2}-36x+20 by 2x^{2}-x-1 and combine like terms.
32x^{4}-88x^{3}+60x^{2}+16x-20=25x^{4}-100x^{3}+150x^{2}-100x+25
Square -5x^{2}-5+10x.
32x^{4}-88x^{3}+60x^{2}+16x-20-25x^{4}=-100x^{3}+150x^{2}-100x+25
Subtract 25x^{4} from both sides.
7x^{4}-88x^{3}+60x^{2}+16x-20=-100x^{3}+150x^{2}-100x+25
Combine 32x^{4} and -25x^{4} to get 7x^{4}.
7x^{4}-88x^{3}+60x^{2}+16x-20+100x^{3}=150x^{2}-100x+25
Add 100x^{3} to both sides.
7x^{4}+12x^{3}+60x^{2}+16x-20=150x^{2}-100x+25
Combine -88x^{3} and 100x^{3} to get 12x^{3}.
7x^{4}+12x^{3}+60x^{2}+16x-20-150x^{2}=-100x+25
Subtract 150x^{2} from both sides.
7x^{4}+12x^{3}-90x^{2}+16x-20=-100x+25
Combine 60x^{2} and -150x^{2} to get -90x^{2}.
7x^{4}+12x^{3}-90x^{2}+16x-20+100x=25
Add 100x to both sides.
7x^{4}+12x^{3}-90x^{2}+116x-20=25
Combine 16x and 100x to get 116x.
7x^{4}+12x^{3}-90x^{2}+116x-20-25=0
Subtract 25 from both sides.
7x^{4}+12x^{3}-90x^{2}+116x-45=0
Subtract 25 from -20 to get -45.
±\frac{45}{7},±45,±\frac{15}{7},±15,±\frac{9}{7},±9,±\frac{5}{7},±5,±\frac{3}{7},±3,±\frac{1}{7},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -45 and q divides the leading coefficient 7. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
7x^{3}+19x^{2}-71x+45=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 7x^{4}+12x^{3}-90x^{2}+116x-45 by x-1 to get 7x^{3}+19x^{2}-71x+45. Solve the equation where the result equals to 0.
±\frac{45}{7},±45,±\frac{15}{7},±15,±\frac{9}{7},±9,±\frac{5}{7},±5,±\frac{3}{7},±3,±\frac{1}{7},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 45 and q divides the leading coefficient 7. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
7x^{2}+26x-45=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 7x^{3}+19x^{2}-71x+45 by x-1 to get 7x^{2}+26x-45. Solve the equation where the result equals to 0.
x=\frac{-26±\sqrt{26^{2}-4\times 7\left(-45\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 7 for a, 26 for b, and -45 for c in the quadratic formula.
x=\frac{-26±44}{14}
Do the calculations.
x=-5 x=\frac{9}{7}
Solve the equation 7x^{2}+26x-45=0 when ± is plus and when ± is minus.
x=1 x=-5 x=\frac{9}{7}
List all found solutions.
\sqrt{4\times 1^{2}-9+5}-\sqrt{2\times 1^{2}-1-1}=\sqrt{1^{2}-1}
Substitute 1 for x in the equation \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.
0=0
Simplify. The value x=1 satisfies the equation.
\sqrt{4\left(-5\right)^{2}-9\left(-5\right)+5}-\sqrt{2\left(-5\right)^{2}-\left(-5\right)-1}=\sqrt{\left(-5\right)^{2}-1}
Substitute -5 for x in the equation \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.
2\times 6^{\frac{1}{2}}=2\times 6^{\frac{1}{2}}
Simplify. The value x=-5 satisfies the equation.
\sqrt{4\times \left(\frac{9}{7}\right)^{2}-9\times \frac{9}{7}+5}-\sqrt{2\times \left(\frac{9}{7}\right)^{2}-\frac{9}{7}-1}=\sqrt{\left(\frac{9}{7}\right)^{2}-1}
Substitute \frac{9}{7} for x in the equation \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.
-\frac{4}{7}\times 2^{\frac{1}{2}}=\frac{4}{7}\times 2^{\frac{1}{2}}
Simplify. The value x=\frac{9}{7} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{4\times 1^{2}-9+5}-\sqrt{2\times 1^{2}-1-1}=\sqrt{1^{2}-1}
Substitute 1 for x in the equation \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.
0=0
Simplify. The value x=1 satisfies the equation.
\sqrt{4\left(-5\right)^{2}-9\left(-5\right)+5}-\sqrt{2\left(-5\right)^{2}-\left(-5\right)-1}=\sqrt{\left(-5\right)^{2}-1}
Substitute -5 for x in the equation \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.
2\times 6^{\frac{1}{2}}=2\times 6^{\frac{1}{2}}
Simplify. The value x=-5 satisfies the equation.
x=1 x=-5
List all solutions of \sqrt{4x^{2}-9x+5}-\sqrt{2x^{2}-x-1}=\sqrt{x^{2}-1}.