Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(\sqrt{4x^{2}-\sqrt{8x+5}}\right)^{2}=\left(2x+1\right)^{2}
Square both sides of the equation.
4x^{2}-\sqrt{8x+5}=\left(2x+1\right)^{2}
Calculate \sqrt{4x^{2}-\sqrt{8x+5}} to the power of 2 and get 4x^{2}-\sqrt{8x+5}.
4x^{2}-\sqrt{8x+5}=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
-\sqrt{8x+5}=4x^{2}+4x+1-4x^{2}
Subtract 4x^{2} from both sides of the equation.
-\sqrt{8x+5}=4x+1
Combine 4x^{2} and -4x^{2} to get 0.
\left(-\sqrt{8x+5}\right)^{2}=\left(4x+1\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{8x+5}\right)^{2}=\left(4x+1\right)^{2}
Expand \left(-\sqrt{8x+5}\right)^{2}.
1\left(\sqrt{8x+5}\right)^{2}=\left(4x+1\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(8x+5\right)=\left(4x+1\right)^{2}
Calculate \sqrt{8x+5} to the power of 2 and get 8x+5.
8x+5=\left(4x+1\right)^{2}
Use the distributive property to multiply 1 by 8x+5.
8x+5=16x^{2}+8x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+1\right)^{2}.
8x+5-16x^{2}=8x+1
Subtract 16x^{2} from both sides.
8x+5-16x^{2}-8x=1
Subtract 8x from both sides.
5-16x^{2}=1
Combine 8x and -8x to get 0.
-16x^{2}=1-5
Subtract 5 from both sides.
-16x^{2}=-4
Subtract 5 from 1 to get -4.
x^{2}=\frac{-4}{-16}
Divide both sides by -16.
x^{2}=\frac{1}{4}
Reduce the fraction \frac{-4}{-16} to lowest terms by extracting and canceling out -4.
x=\frac{1}{2} x=-\frac{1}{2}
Take the square root of both sides of the equation.
\sqrt{4\times \left(\frac{1}{2}\right)^{2}-\sqrt{8\times \frac{1}{2}+5}}=2\times \frac{1}{2}+1
Substitute \frac{1}{2} for x in the equation \sqrt{4x^{2}-\sqrt{8x+5}}=2x+1. The expression \sqrt{4\times \left(\frac{1}{2}\right)^{2}-\sqrt{8\times \frac{1}{2}+5}} is undefined because the radicand cannot be negative.
\sqrt{4\left(-\frac{1}{2}\right)^{2}-\sqrt{8\left(-\frac{1}{2}\right)+5}}=2\left(-\frac{1}{2}\right)+1
Substitute -\frac{1}{2} for x in the equation \sqrt{4x^{2}-\sqrt{8x+5}}=2x+1.
0=0
Simplify. The value x=-\frac{1}{2} satisfies the equation.
x=-\frac{1}{2}
Equation \sqrt{4x^{2}-\sqrt{8x+5}}=2x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}