Solve for x
x=-\frac{5}{9}\approx -0.555555556
x=-1
Graph
Share
Copied to clipboard
\sqrt{4x+5}=1+\sqrt{x+1}
Subtract -\sqrt{x+1} from both sides of the equation.
\left(\sqrt{4x+5}\right)^{2}=\left(1+\sqrt{x+1}\right)^{2}
Square both sides of the equation.
4x+5=\left(1+\sqrt{x+1}\right)^{2}
Calculate \sqrt{4x+5} to the power of 2 and get 4x+5.
4x+5=1+2\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+1}\right)^{2}.
4x+5=1+2\sqrt{x+1}+x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
4x+5=2+2\sqrt{x+1}+x
Add 1 and 1 to get 2.
4x+5-\left(2+x\right)=2\sqrt{x+1}
Subtract 2+x from both sides of the equation.
4x+5-2-x=2\sqrt{x+1}
To find the opposite of 2+x, find the opposite of each term.
4x+3-x=2\sqrt{x+1}
Subtract 2 from 5 to get 3.
3x+3=2\sqrt{x+1}
Combine 4x and -x to get 3x.
\left(3x+3\right)^{2}=\left(2\sqrt{x+1}\right)^{2}
Square both sides of the equation.
9x^{2}+18x+9=\left(2\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+3\right)^{2}.
9x^{2}+18x+9=2^{2}\left(\sqrt{x+1}\right)^{2}
Expand \left(2\sqrt{x+1}\right)^{2}.
9x^{2}+18x+9=4\left(\sqrt{x+1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
9x^{2}+18x+9=4\left(x+1\right)
Calculate \sqrt{x+1} to the power of 2 and get x+1.
9x^{2}+18x+9=4x+4
Use the distributive property to multiply 4 by x+1.
9x^{2}+18x+9-4x=4
Subtract 4x from both sides.
9x^{2}+14x+9=4
Combine 18x and -4x to get 14x.
9x^{2}+14x+9-4=0
Subtract 4 from both sides.
9x^{2}+14x+5=0
Subtract 4 from 9 to get 5.
a+b=14 ab=9\times 5=45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,45 3,15 5,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 45.
1+45=46 3+15=18 5+9=14
Calculate the sum for each pair.
a=5 b=9
The solution is the pair that gives sum 14.
\left(9x^{2}+5x\right)+\left(9x+5\right)
Rewrite 9x^{2}+14x+5 as \left(9x^{2}+5x\right)+\left(9x+5\right).
x\left(9x+5\right)+9x+5
Factor out x in 9x^{2}+5x.
\left(9x+5\right)\left(x+1\right)
Factor out common term 9x+5 by using distributive property.
x=-\frac{5}{9} x=-1
To find equation solutions, solve 9x+5=0 and x+1=0.
\sqrt{4\left(-\frac{5}{9}\right)+5}-\sqrt{-\frac{5}{9}+1}=1
Substitute -\frac{5}{9} for x in the equation \sqrt{4x+5}-\sqrt{x+1}=1.
1=1
Simplify. The value x=-\frac{5}{9} satisfies the equation.
\sqrt{4\left(-1\right)+5}-\sqrt{-1+1}=1
Substitute -1 for x in the equation \sqrt{4x+5}-\sqrt{x+1}=1.
1=1
Simplify. The value x=-1 satisfies the equation.
x=-\frac{5}{9} x=-1
List all solutions of \sqrt{4x+5}=\sqrt{x+1}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}