Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{4x+1}\right)^{2}=\left(2-3x\right)^{2}
Square both sides of the equation.
4x+1=\left(2-3x\right)^{2}
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
4x+1=4-12x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3x\right)^{2}.
4x+1-4=-12x+9x^{2}
Subtract 4 from both sides.
4x-3=-12x+9x^{2}
Subtract 4 from 1 to get -3.
4x-3+12x=9x^{2}
Add 12x to both sides.
16x-3=9x^{2}
Combine 4x and 12x to get 16x.
16x-3-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+16x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
Square 16.
x=\frac{-16±\sqrt{256+36\left(-3\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-16±\sqrt{256-108}}{2\left(-9\right)}
Multiply 36 times -3.
x=\frac{-16±\sqrt{148}}{2\left(-9\right)}
Add 256 to -108.
x=\frac{-16±2\sqrt{37}}{2\left(-9\right)}
Take the square root of 148.
x=\frac{-16±2\sqrt{37}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{37}-16}{-18}
Now solve the equation x=\frac{-16±2\sqrt{37}}{-18} when ± is plus. Add -16 to 2\sqrt{37}.
x=\frac{8-\sqrt{37}}{9}
Divide -16+2\sqrt{37} by -18.
x=\frac{-2\sqrt{37}-16}{-18}
Now solve the equation x=\frac{-16±2\sqrt{37}}{-18} when ± is minus. Subtract 2\sqrt{37} from -16.
x=\frac{\sqrt{37}+8}{9}
Divide -16-2\sqrt{37} by -18.
x=\frac{8-\sqrt{37}}{9} x=\frac{\sqrt{37}+8}{9}
The equation is now solved.
\sqrt{4\times \frac{8-\sqrt{37}}{9}+1}=2-3\times \frac{8-\sqrt{37}}{9}
Substitute \frac{8-\sqrt{37}}{9} for x in the equation \sqrt{4x+1}=2-3x.
\frac{1}{3}\times 37^{\frac{1}{2}}-\frac{2}{3}=-\frac{2}{3}+\frac{1}{3}\times 37^{\frac{1}{2}}
Simplify. The value x=\frac{8-\sqrt{37}}{9} satisfies the equation.
\sqrt{4\times \frac{\sqrt{37}+8}{9}+1}=2-3\times \frac{\sqrt{37}+8}{9}
Substitute \frac{\sqrt{37}+8}{9} for x in the equation \sqrt{4x+1}=2-3x.
\frac{1}{3}\times 37^{\frac{1}{2}}+\frac{2}{3}=-\frac{2}{3}-\frac{1}{3}\times 37^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{37}+8}{9} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{8-\sqrt{37}}{9}
Equation \sqrt{4x+1}=2-3x has a unique solution.