Solve for x
x=\frac{8-\sqrt{37}}{9}\approx 0.213026386
Graph
Share
Copied to clipboard
\left(\sqrt{4x+1}\right)^{2}=\left(2-3x\right)^{2}
Square both sides of the equation.
4x+1=\left(2-3x\right)^{2}
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
4x+1=4-12x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3x\right)^{2}.
4x+1-4=-12x+9x^{2}
Subtract 4 from both sides.
4x-3=-12x+9x^{2}
Subtract 4 from 1 to get -3.
4x-3+12x=9x^{2}
Add 12x to both sides.
16x-3=9x^{2}
Combine 4x and 12x to get 16x.
16x-3-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+16x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
Square 16.
x=\frac{-16±\sqrt{256+36\left(-3\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-16±\sqrt{256-108}}{2\left(-9\right)}
Multiply 36 times -3.
x=\frac{-16±\sqrt{148}}{2\left(-9\right)}
Add 256 to -108.
x=\frac{-16±2\sqrt{37}}{2\left(-9\right)}
Take the square root of 148.
x=\frac{-16±2\sqrt{37}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{37}-16}{-18}
Now solve the equation x=\frac{-16±2\sqrt{37}}{-18} when ± is plus. Add -16 to 2\sqrt{37}.
x=\frac{8-\sqrt{37}}{9}
Divide -16+2\sqrt{37} by -18.
x=\frac{-2\sqrt{37}-16}{-18}
Now solve the equation x=\frac{-16±2\sqrt{37}}{-18} when ± is minus. Subtract 2\sqrt{37} from -16.
x=\frac{\sqrt{37}+8}{9}
Divide -16-2\sqrt{37} by -18.
x=\frac{8-\sqrt{37}}{9} x=\frac{\sqrt{37}+8}{9}
The equation is now solved.
\sqrt{4\times \frac{8-\sqrt{37}}{9}+1}=2-3\times \frac{8-\sqrt{37}}{9}
Substitute \frac{8-\sqrt{37}}{9} for x in the equation \sqrt{4x+1}=2-3x.
\frac{1}{3}\times 37^{\frac{1}{2}}-\frac{2}{3}=-\frac{2}{3}+\frac{1}{3}\times 37^{\frac{1}{2}}
Simplify. The value x=\frac{8-\sqrt{37}}{9} satisfies the equation.
\sqrt{4\times \frac{\sqrt{37}+8}{9}+1}=2-3\times \frac{\sqrt{37}+8}{9}
Substitute \frac{\sqrt{37}+8}{9} for x in the equation \sqrt{4x+1}=2-3x.
\frac{1}{3}\times 37^{\frac{1}{2}}+\frac{2}{3}=-\frac{2}{3}-\frac{1}{3}\times 37^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{37}+8}{9} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{8-\sqrt{37}}{9}
Equation \sqrt{4x+1}=2-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}