Solve for x
x=-5
x=0
Graph
Share
Copied to clipboard
\sqrt{4-x}=5-\sqrt{9+x}
Subtract \sqrt{9+x} from both sides of the equation.
\left(\sqrt{4-x}\right)^{2}=\left(5-\sqrt{9+x}\right)^{2}
Square both sides of the equation.
4-x=\left(5-\sqrt{9+x}\right)^{2}
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
4-x=25-10\sqrt{9+x}+\left(\sqrt{9+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{9+x}\right)^{2}.
4-x=25-10\sqrt{9+x}+9+x
Calculate \sqrt{9+x} to the power of 2 and get 9+x.
4-x=34-10\sqrt{9+x}+x
Add 25 and 9 to get 34.
4-x-\left(34+x\right)=-10\sqrt{9+x}
Subtract 34+x from both sides of the equation.
4-x-34-x=-10\sqrt{9+x}
To find the opposite of 34+x, find the opposite of each term.
-30-x-x=-10\sqrt{9+x}
Subtract 34 from 4 to get -30.
-30-2x=-10\sqrt{9+x}
Combine -x and -x to get -2x.
\left(-30-2x\right)^{2}=\left(-10\sqrt{9+x}\right)^{2}
Square both sides of the equation.
900+120x+4x^{2}=\left(-10\sqrt{9+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-30-2x\right)^{2}.
900+120x+4x^{2}=\left(-10\right)^{2}\left(\sqrt{9+x}\right)^{2}
Expand \left(-10\sqrt{9+x}\right)^{2}.
900+120x+4x^{2}=100\left(\sqrt{9+x}\right)^{2}
Calculate -10 to the power of 2 and get 100.
900+120x+4x^{2}=100\left(9+x\right)
Calculate \sqrt{9+x} to the power of 2 and get 9+x.
900+120x+4x^{2}=900+100x
Use the distributive property to multiply 100 by 9+x.
900+120x+4x^{2}-900=100x
Subtract 900 from both sides.
120x+4x^{2}=100x
Subtract 900 from 900 to get 0.
120x+4x^{2}-100x=0
Subtract 100x from both sides.
20x+4x^{2}=0
Combine 120x and -100x to get 20x.
x\left(20+4x\right)=0
Factor out x.
x=0 x=-5
To find equation solutions, solve x=0 and 20+4x=0.
\sqrt{4-0}+\sqrt{9+0}=5
Substitute 0 for x in the equation \sqrt{4-x}+\sqrt{9+x}=5.
5=5
Simplify. The value x=0 satisfies the equation.
\sqrt{4-\left(-5\right)}+\sqrt{9-5}=5
Substitute -5 for x in the equation \sqrt{4-x}+\sqrt{9+x}=5.
5=5
Simplify. The value x=-5 satisfies the equation.
x=0 x=-5
List all solutions of \sqrt{4-x}=-\sqrt{x+9}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}