Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{4-x}=3-\sqrt{1+x}
Subtract \sqrt{1+x} from both sides of the equation.
\left(\sqrt{4-x}\right)^{2}=\left(3-\sqrt{1+x}\right)^{2}
Square both sides of the equation.
4-x=\left(3-\sqrt{1+x}\right)^{2}
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
4-x=9-6\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{1+x}\right)^{2}.
4-x=9-6\sqrt{1+x}+1+x
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
4-x=10-6\sqrt{1+x}+x
Add 9 and 1 to get 10.
4-x-\left(10+x\right)=-6\sqrt{1+x}
Subtract 10+x from both sides of the equation.
4-x-10-x=-6\sqrt{1+x}
To find the opposite of 10+x, find the opposite of each term.
-6-x-x=-6\sqrt{1+x}
Subtract 10 from 4 to get -6.
-6-2x=-6\sqrt{1+x}
Combine -x and -x to get -2x.
\left(-6-2x\right)^{2}=\left(-6\sqrt{1+x}\right)^{2}
Square both sides of the equation.
36+24x+4x^{2}=\left(-6\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6-2x\right)^{2}.
36+24x+4x^{2}=\left(-6\right)^{2}\left(\sqrt{1+x}\right)^{2}
Expand \left(-6\sqrt{1+x}\right)^{2}.
36+24x+4x^{2}=36\left(\sqrt{1+x}\right)^{2}
Calculate -6 to the power of 2 and get 36.
36+24x+4x^{2}=36\left(1+x\right)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
36+24x+4x^{2}=36+36x
Use the distributive property to multiply 36 by 1+x.
36+24x+4x^{2}-36=36x
Subtract 36 from both sides.
24x+4x^{2}=36x
Subtract 36 from 36 to get 0.
24x+4x^{2}-36x=0
Subtract 36x from both sides.
-12x+4x^{2}=0
Combine 24x and -36x to get -12x.
x\left(-12+4x\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -12+4x=0.
\sqrt{4-0}+\sqrt{1+0}=3
Substitute 0 for x in the equation \sqrt{4-x}+\sqrt{1+x}=3.
3=3
Simplify. The value x=0 satisfies the equation.
\sqrt{4-3}+\sqrt{1+3}=3
Substitute 3 for x in the equation \sqrt{4-x}+\sqrt{1+x}=3.
3=3
Simplify. The value x=3 satisfies the equation.
x=0 x=3
List all solutions of \sqrt{4-x}=-\sqrt{x+1}+3.