Solve for x
x=3
x=0
Graph
Share
Copied to clipboard
\sqrt{4-x}=3-\sqrt{1+x}
Subtract \sqrt{1+x} from both sides of the equation.
\left(\sqrt{4-x}\right)^{2}=\left(3-\sqrt{1+x}\right)^{2}
Square both sides of the equation.
4-x=\left(3-\sqrt{1+x}\right)^{2}
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
4-x=9-6\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{1+x}\right)^{2}.
4-x=9-6\sqrt{1+x}+1+x
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
4-x=10-6\sqrt{1+x}+x
Add 9 and 1 to get 10.
4-x-\left(10+x\right)=-6\sqrt{1+x}
Subtract 10+x from both sides of the equation.
4-x-10-x=-6\sqrt{1+x}
To find the opposite of 10+x, find the opposite of each term.
-6-x-x=-6\sqrt{1+x}
Subtract 10 from 4 to get -6.
-6-2x=-6\sqrt{1+x}
Combine -x and -x to get -2x.
\left(-6-2x\right)^{2}=\left(-6\sqrt{1+x}\right)^{2}
Square both sides of the equation.
36+24x+4x^{2}=\left(-6\sqrt{1+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6-2x\right)^{2}.
36+24x+4x^{2}=\left(-6\right)^{2}\left(\sqrt{1+x}\right)^{2}
Expand \left(-6\sqrt{1+x}\right)^{2}.
36+24x+4x^{2}=36\left(\sqrt{1+x}\right)^{2}
Calculate -6 to the power of 2 and get 36.
36+24x+4x^{2}=36\left(1+x\right)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
36+24x+4x^{2}=36+36x
Use the distributive property to multiply 36 by 1+x.
36+24x+4x^{2}-36=36x
Subtract 36 from both sides.
24x+4x^{2}=36x
Subtract 36 from 36 to get 0.
24x+4x^{2}-36x=0
Subtract 36x from both sides.
-12x+4x^{2}=0
Combine 24x and -36x to get -12x.
x\left(-12+4x\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -12+4x=0.
\sqrt{4-0}+\sqrt{1+0}=3
Substitute 0 for x in the equation \sqrt{4-x}+\sqrt{1+x}=3.
3=3
Simplify. The value x=0 satisfies the equation.
\sqrt{4-3}+\sqrt{1+3}=3
Substitute 3 for x in the equation \sqrt{4-x}+\sqrt{1+x}=3.
3=3
Simplify. The value x=3 satisfies the equation.
x=0 x=3
List all solutions of \sqrt{4-x}=-\sqrt{x+1}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}