Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(\sqrt{4-6x-x^{2}}\right)^{2}=\left(x+4\right)^{2}
Square both sides of the equation.
4-6x-x^{2}=\left(x+4\right)^{2}
Calculate \sqrt{4-6x-x^{2}} to the power of 2 and get 4-6x-x^{2}.
4-6x-x^{2}=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
4-6x-x^{2}-x^{2}=8x+16
Subtract x^{2} from both sides.
4-6x-2x^{2}=8x+16
Combine -x^{2} and -x^{2} to get -2x^{2}.
4-6x-2x^{2}-8x=16
Subtract 8x from both sides.
4-14x-2x^{2}=16
Combine -6x and -8x to get -14x.
4-14x-2x^{2}-16=0
Subtract 16 from both sides.
-12-14x-2x^{2}=0
Subtract 16 from 4 to get -12.
-6-7x-x^{2}=0
Divide both sides by 2.
-x^{2}-7x-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=-\left(-6\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-1 b=-6
The solution is the pair that gives sum -7.
\left(-x^{2}-x\right)+\left(-6x-6\right)
Rewrite -x^{2}-7x-6 as \left(-x^{2}-x\right)+\left(-6x-6\right).
x\left(-x-1\right)+6\left(-x-1\right)
Factor out x in the first and 6 in the second group.
\left(-x-1\right)\left(x+6\right)
Factor out common term -x-1 by using distributive property.
x=-1 x=-6
To find equation solutions, solve -x-1=0 and x+6=0.
\sqrt{4-6\left(-1\right)-\left(-1\right)^{2}}=-1+4
Substitute -1 for x in the equation \sqrt{4-6x-x^{2}}=x+4.
3=3
Simplify. The value x=-1 satisfies the equation.
\sqrt{4-6\left(-6\right)-\left(-6\right)^{2}}=-6+4
Substitute -6 for x in the equation \sqrt{4-6x-x^{2}}=x+4.
2=-2
Simplify. The value x=-6 does not satisfy the equation because the left and the right hand side have opposite signs.
x=-1
Equation \sqrt{4-6x-x^{2}}=x+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}