Evaluate
\frac{4\sqrt{7}}{7}\approx 1.511857892
Share
Copied to clipboard
\sqrt{4-\left(\frac{2}{7}\right)^{2}\left(\sqrt{21}\right)^{2}}
Expand \left(\frac{2}{7}\sqrt{21}\right)^{2}.
\sqrt{4-\frac{4}{49}\left(\sqrt{21}\right)^{2}}
Calculate \frac{2}{7} to the power of 2 and get \frac{4}{49}.
\sqrt{4-\frac{4}{49}\times 21}
The square of \sqrt{21} is 21.
\sqrt{4-\frac{12}{7}}
Multiply \frac{4}{49} and 21 to get \frac{12}{7}.
\sqrt{\frac{16}{7}}
Subtract \frac{12}{7} from 4 to get \frac{16}{7}.
\frac{\sqrt{16}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{16}{7}} as the division of square roots \frac{\sqrt{16}}{\sqrt{7}}.
\frac{4}{\sqrt{7}}
Calculate the square root of 16 and get 4.
\frac{4\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{4\sqrt{7}}{7}
The square of \sqrt{7} is 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}