Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{4-\left(\frac{2}{7}\right)^{2}\left(\sqrt{21}\right)^{2}}
Expand \left(\frac{2}{7}\sqrt{21}\right)^{2}.
\sqrt{4-\frac{4}{49}\left(\sqrt{21}\right)^{2}}
Calculate \frac{2}{7} to the power of 2 and get \frac{4}{49}.
\sqrt{4-\frac{4}{49}\times 21}
The square of \sqrt{21} is 21.
\sqrt{4-\frac{12}{7}}
Multiply \frac{4}{49} and 21 to get \frac{12}{7}.
\sqrt{\frac{16}{7}}
Subtract \frac{12}{7} from 4 to get \frac{16}{7}.
\frac{\sqrt{16}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{16}{7}} as the division of square roots \frac{\sqrt{16}}{\sqrt{7}}.
\frac{4}{\sqrt{7}}
Calculate the square root of 16 and get 4.
\frac{4\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{4\sqrt{7}}{7}
The square of \sqrt{7} is 7.