Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{4+m^{2}}\right)^{2}=\left(m+1\right)^{2}
Square both sides of the equation.
4+m^{2}=\left(m+1\right)^{2}
Calculate \sqrt{4+m^{2}} to the power of 2 and get 4+m^{2}.
4+m^{2}=m^{2}+2m+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
4+m^{2}-m^{2}=2m+1
Subtract m^{2} from both sides.
4=2m+1
Combine m^{2} and -m^{2} to get 0.
2m+1=4
Swap sides so that all variable terms are on the left hand side.
2m=4-1
Subtract 1 from both sides.
2m=3
Subtract 1 from 4 to get 3.
m=\frac{3}{2}
Divide both sides by 2.
\sqrt{4+\left(\frac{3}{2}\right)^{2}}=\frac{3}{2}+1
Substitute \frac{3}{2} for m in the equation \sqrt{4+m^{2}}=m+1.
\frac{5}{2}=\frac{5}{2}
Simplify. The value m=\frac{3}{2} satisfies the equation.
m=\frac{3}{2}
Equation \sqrt{m^{2}+4}=m+1 has a unique solution.