Evaluate
4\sqrt{2}\approx 5.656854249
Share
Copied to clipboard
\sqrt{30}\sqrt{\frac{6+2}{3}}\sqrt{0.4}
Multiply 2 and 3 to get 6.
\sqrt{30}\sqrt{\frac{8}{3}}\sqrt{0.4}
Add 6 and 2 to get 8.
\sqrt{30}\times \frac{\sqrt{8}}{\sqrt{3}}\sqrt{0.4}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\sqrt{30}\times \frac{2\sqrt{2}}{\sqrt{3}}\sqrt{0.4}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\sqrt{30}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{0.4}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{30}\times \frac{2\sqrt{2}\sqrt{3}}{3}\sqrt{0.4}
The square of \sqrt{3} is 3.
\sqrt{30}\times \frac{2\sqrt{6}}{3}\sqrt{0.4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\sqrt{0.4}
Express \sqrt{30}\times \frac{2\sqrt{6}}{3} as a single fraction.
\frac{\sqrt{6}\sqrt{5}\times 2\sqrt{6}}{3}\sqrt{0.4}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
\frac{6\times 2\sqrt{5}}{3}\sqrt{0.4}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{12\sqrt{5}}{3}\sqrt{0.4}
Multiply 6 and 2 to get 12.
4\sqrt{5}\sqrt{0.4}
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
4\sqrt{2}
To multiply \sqrt{5} and \sqrt{0.4}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}