Evaluate
2\sqrt{15}+3\sqrt{10}\approx 17.232799673
Share
Copied to clipboard
\frac{\sqrt{30}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{30}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\sqrt{30}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{30}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\sqrt{30}\left(\sqrt{3}+\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\sqrt{30}\left(\sqrt{3}+\sqrt{2}\right)
Anything divided by one gives itself.
\sqrt{30}\sqrt{3}+\sqrt{30}\sqrt{2}
Use the distributive property to multiply \sqrt{30} by \sqrt{3}+\sqrt{2}.
\sqrt{3}\sqrt{10}\sqrt{3}+\sqrt{30}\sqrt{2}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
3\sqrt{10}+\sqrt{30}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{10}+\sqrt{2}\sqrt{15}\sqrt{2}
Factor 30=2\times 15. Rewrite the square root of the product \sqrt{2\times 15} as the product of square roots \sqrt{2}\sqrt{15}.
3\sqrt{10}+2\sqrt{15}
Multiply \sqrt{2} and \sqrt{2} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}