Solve for x (complex solution)
x=\frac{-30\sqrt{358601}i+9000}{899}\approx 10.011123471-19.983304733i
x=\frac{9000+30\sqrt{358601}i}{899}\approx 10.011123471+19.983304733i
Graph
Share
Copied to clipboard
\left(\sqrt{30^{2}+x^{2}}\right)^{2}=\left(30\sqrt{20^{2}+\left(10-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{900+x^{2}}\right)^{2}=\left(30\sqrt{20^{2}+\left(10-x\right)^{2}}\right)^{2}
Calculate 30 to the power of 2 and get 900.
900+x^{2}=\left(30\sqrt{20^{2}+\left(10-x\right)^{2}}\right)^{2}
Calculate \sqrt{900+x^{2}} to the power of 2 and get 900+x^{2}.
900+x^{2}=\left(30\sqrt{400+\left(10-x\right)^{2}}\right)^{2}
Calculate 20 to the power of 2 and get 400.
900+x^{2}=\left(30\sqrt{400+100-20x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
900+x^{2}=\left(30\sqrt{500-20x+x^{2}}\right)^{2}
Add 400 and 100 to get 500.
900+x^{2}=30^{2}\left(\sqrt{500-20x+x^{2}}\right)^{2}
Expand \left(30\sqrt{500-20x+x^{2}}\right)^{2}.
900+x^{2}=900\left(\sqrt{500-20x+x^{2}}\right)^{2}
Calculate 30 to the power of 2 and get 900.
900+x^{2}=900\left(500-20x+x^{2}\right)
Calculate \sqrt{500-20x+x^{2}} to the power of 2 and get 500-20x+x^{2}.
900+x^{2}=450000-18000x+900x^{2}
Use the distributive property to multiply 900 by 500-20x+x^{2}.
900+x^{2}-450000=-18000x+900x^{2}
Subtract 450000 from both sides.
-449100+x^{2}=-18000x+900x^{2}
Subtract 450000 from 900 to get -449100.
-449100+x^{2}+18000x=900x^{2}
Add 18000x to both sides.
-449100+x^{2}+18000x-900x^{2}=0
Subtract 900x^{2} from both sides.
-449100-899x^{2}+18000x=0
Combine x^{2} and -900x^{2} to get -899x^{2}.
-899x^{2}+18000x-449100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18000±\sqrt{18000^{2}-4\left(-899\right)\left(-449100\right)}}{2\left(-899\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -899 for a, 18000 for b, and -449100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18000±\sqrt{324000000-4\left(-899\right)\left(-449100\right)}}{2\left(-899\right)}
Square 18000.
x=\frac{-18000±\sqrt{324000000+3596\left(-449100\right)}}{2\left(-899\right)}
Multiply -4 times -899.
x=\frac{-18000±\sqrt{324000000-1614963600}}{2\left(-899\right)}
Multiply 3596 times -449100.
x=\frac{-18000±\sqrt{-1290963600}}{2\left(-899\right)}
Add 324000000 to -1614963600.
x=\frac{-18000±60\sqrt{358601}i}{2\left(-899\right)}
Take the square root of -1290963600.
x=\frac{-18000±60\sqrt{358601}i}{-1798}
Multiply 2 times -899.
x=\frac{-18000+60\sqrt{358601}i}{-1798}
Now solve the equation x=\frac{-18000±60\sqrt{358601}i}{-1798} when ± is plus. Add -18000 to 60i\sqrt{358601}.
x=\frac{-30\sqrt{358601}i+9000}{899}
Divide -18000+60i\sqrt{358601} by -1798.
x=\frac{-60\sqrt{358601}i-18000}{-1798}
Now solve the equation x=\frac{-18000±60\sqrt{358601}i}{-1798} when ± is minus. Subtract 60i\sqrt{358601} from -18000.
x=\frac{9000+30\sqrt{358601}i}{899}
Divide -18000-60i\sqrt{358601} by -1798.
x=\frac{-30\sqrt{358601}i+9000}{899} x=\frac{9000+30\sqrt{358601}i}{899}
The equation is now solved.
\sqrt{30^{2}+\left(\frac{-30\sqrt{358601}i+9000}{899}\right)^{2}}=30\sqrt{20^{2}+\left(10-\frac{-30\sqrt{358601}i+9000}{899}\right)^{2}}
Substitute \frac{-30\sqrt{358601}i+9000}{899} for x in the equation \sqrt{30^{2}+x^{2}}=30\sqrt{20^{2}+\left(10-x\right)^{2}}.
\frac{30}{899}\left(539600-600i\times 358601^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{300}{899}\left(5396-6i\times 358601^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{-30\sqrt{358601}i+9000}{899} satisfies the equation.
\sqrt{30^{2}+\left(\frac{9000+30\sqrt{358601}i}{899}\right)^{2}}=30\sqrt{20^{2}+\left(10-\frac{9000+30\sqrt{358601}i}{899}\right)^{2}}
Substitute \frac{9000+30\sqrt{358601}i}{899} for x in the equation \sqrt{30^{2}+x^{2}}=30\sqrt{20^{2}+\left(10-x\right)^{2}}.
\frac{30}{899}\left(539600+600i\times 358601^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{300}{899}\left(5396+6i\times 358601^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{9000+30\sqrt{358601}i}{899} satisfies the equation.
x=\frac{-30\sqrt{358601}i+9000}{899} x=\frac{9000+30\sqrt{358601}i}{899}
List all solutions of \sqrt{x^{2}+900}=30\sqrt{\left(10-x\right)^{2}+400}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}