Solve for z
z=-4
Share
Copied to clipboard
\left(\sqrt{3z^{2}+16}\right)^{2}=\left(\sqrt{2z^{2}-8z}\right)^{2}
Square both sides of the equation.
3z^{2}+16=\left(\sqrt{2z^{2}-8z}\right)^{2}
Calculate \sqrt{3z^{2}+16} to the power of 2 and get 3z^{2}+16.
3z^{2}+16=2z^{2}-8z
Calculate \sqrt{2z^{2}-8z} to the power of 2 and get 2z^{2}-8z.
3z^{2}+16-2z^{2}=-8z
Subtract 2z^{2} from both sides.
z^{2}+16=-8z
Combine 3z^{2} and -2z^{2} to get z^{2}.
z^{2}+16+8z=0
Add 8z to both sides.
z^{2}+8z+16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=16
To solve the equation, factor z^{2}+8z+16 using formula z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). To find a and b, set up a system to be solved.
1,16 2,8 4,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
a=4 b=4
The solution is the pair that gives sum 8.
\left(z+4\right)\left(z+4\right)
Rewrite factored expression \left(z+a\right)\left(z+b\right) using the obtained values.
\left(z+4\right)^{2}
Rewrite as a binomial square.
z=-4
To find equation solution, solve z+4=0.
\sqrt{3\left(-4\right)^{2}+16}=\sqrt{2\left(-4\right)^{2}-8\left(-4\right)}
Substitute -4 for z in the equation \sqrt{3z^{2}+16}=\sqrt{2z^{2}-8z}.
8=8
Simplify. The value z=-4 satisfies the equation.
z=-4
Equation \sqrt{3z^{2}+16}=\sqrt{2z^{2}-8z} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}