Solve for y
y=4
Graph
Share
Copied to clipboard
\left(\sqrt{3y+4}\right)^{2}=y^{2}
Square both sides of the equation.
3y+4=y^{2}
Calculate \sqrt{3y+4} to the power of 2 and get 3y+4.
3y+4-y^{2}=0
Subtract y^{2} from both sides.
-y^{2}+3y+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=-4=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by+4. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=4 b=-1
The solution is the pair that gives sum 3.
\left(-y^{2}+4y\right)+\left(-y+4\right)
Rewrite -y^{2}+3y+4 as \left(-y^{2}+4y\right)+\left(-y+4\right).
-y\left(y-4\right)-\left(y-4\right)
Factor out -y in the first and -1 in the second group.
\left(y-4\right)\left(-y-1\right)
Factor out common term y-4 by using distributive property.
y=4 y=-1
To find equation solutions, solve y-4=0 and -y-1=0.
\sqrt{3\times 4+4}=4
Substitute 4 for y in the equation \sqrt{3y+4}=y.
4=4
Simplify. The value y=4 satisfies the equation.
\sqrt{3\left(-1\right)+4}=-1
Substitute -1 for y in the equation \sqrt{3y+4}=y.
1=-1
Simplify. The value y=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
y=4
Equation \sqrt{3y+4}=y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}