Solve for x
x = \frac{\sqrt{41} + 13}{2} \approx 9.701562119
Graph
Share
Copied to clipboard
\left(\sqrt{3x-7}\right)^{2}=\left(x-5\right)^{2}
Square both sides of the equation.
3x-7=\left(x-5\right)^{2}
Calculate \sqrt{3x-7} to the power of 2 and get 3x-7.
3x-7=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x-7-x^{2}=-10x+25
Subtract x^{2} from both sides.
3x-7-x^{2}+10x=25
Add 10x to both sides.
13x-7-x^{2}=25
Combine 3x and 10x to get 13x.
13x-7-x^{2}-25=0
Subtract 25 from both sides.
13x-32-x^{2}=0
Subtract 25 from -7 to get -32.
-x^{2}+13x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\left(-32\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 13 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-1\right)\left(-32\right)}}{2\left(-1\right)}
Square 13.
x=\frac{-13±\sqrt{169+4\left(-32\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-13±\sqrt{169-128}}{2\left(-1\right)}
Multiply 4 times -32.
x=\frac{-13±\sqrt{41}}{2\left(-1\right)}
Add 169 to -128.
x=\frac{-13±\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{41}-13}{-2}
Now solve the equation x=\frac{-13±\sqrt{41}}{-2} when ± is plus. Add -13 to \sqrt{41}.
x=\frac{13-\sqrt{41}}{2}
Divide -13+\sqrt{41} by -2.
x=\frac{-\sqrt{41}-13}{-2}
Now solve the equation x=\frac{-13±\sqrt{41}}{-2} when ± is minus. Subtract \sqrt{41} from -13.
x=\frac{\sqrt{41}+13}{2}
Divide -13-\sqrt{41} by -2.
x=\frac{13-\sqrt{41}}{2} x=\frac{\sqrt{41}+13}{2}
The equation is now solved.
\sqrt{3\times \frac{13-\sqrt{41}}{2}-7}=\frac{13-\sqrt{41}}{2}-5
Substitute \frac{13-\sqrt{41}}{2} for x in the equation \sqrt{3x-7}=x-5.
-\left(\frac{3}{2}-\frac{1}{2}\times 41^{\frac{1}{2}}\right)=\frac{3}{2}-\frac{1}{2}\times 41^{\frac{1}{2}}
Simplify. The value x=\frac{13-\sqrt{41}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{3\times \frac{\sqrt{41}+13}{2}-7}=\frac{\sqrt{41}+13}{2}-5
Substitute \frac{\sqrt{41}+13}{2} for x in the equation \sqrt{3x-7}=x-5.
\frac{3}{2}+\frac{1}{2}\times 41^{\frac{1}{2}}=\frac{1}{2}\times 41^{\frac{1}{2}}+\frac{3}{2}
Simplify. The value x=\frac{\sqrt{41}+13}{2} satisfies the equation.
x=\frac{\sqrt{41}+13}{2}
Equation \sqrt{3x-7}=x-5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}