Solve for x
x=8\sqrt{2}+16\approx 27.313708499
Graph
Share
Copied to clipboard
\sqrt{3x-4}=4+\sqrt{x-4}
Subtract -\sqrt{x-4} from both sides of the equation.
\left(\sqrt{3x-4}\right)^{2}=\left(4+\sqrt{x-4}\right)^{2}
Square both sides of the equation.
3x-4=\left(4+\sqrt{x-4}\right)^{2}
Calculate \sqrt{3x-4} to the power of 2 and get 3x-4.
3x-4=16+8\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{x-4}\right)^{2}.
3x-4=16+8\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
3x-4=12+8\sqrt{x-4}+x
Subtract 4 from 16 to get 12.
3x-4-\left(12+x\right)=8\sqrt{x-4}
Subtract 12+x from both sides of the equation.
3x-4-12-x=8\sqrt{x-4}
To find the opposite of 12+x, find the opposite of each term.
3x-16-x=8\sqrt{x-4}
Subtract 12 from -4 to get -16.
2x-16=8\sqrt{x-4}
Combine 3x and -x to get 2x.
\left(2x-16\right)^{2}=\left(8\sqrt{x-4}\right)^{2}
Square both sides of the equation.
4x^{2}-64x+256=\left(8\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-16\right)^{2}.
4x^{2}-64x+256=8^{2}\left(\sqrt{x-4}\right)^{2}
Expand \left(8\sqrt{x-4}\right)^{2}.
4x^{2}-64x+256=64\left(\sqrt{x-4}\right)^{2}
Calculate 8 to the power of 2 and get 64.
4x^{2}-64x+256=64\left(x-4\right)
Calculate \sqrt{x-4} to the power of 2 and get x-4.
4x^{2}-64x+256=64x-256
Use the distributive property to multiply 64 by x-4.
4x^{2}-64x+256-64x=-256
Subtract 64x from both sides.
4x^{2}-128x+256=-256
Combine -64x and -64x to get -128x.
4x^{2}-128x+256+256=0
Add 256 to both sides.
4x^{2}-128x+512=0
Add 256 and 256 to get 512.
x=\frac{-\left(-128\right)±\sqrt{\left(-128\right)^{2}-4\times 4\times 512}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -128 for b, and 512 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-128\right)±\sqrt{16384-4\times 4\times 512}}{2\times 4}
Square -128.
x=\frac{-\left(-128\right)±\sqrt{16384-16\times 512}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-128\right)±\sqrt{16384-8192}}{2\times 4}
Multiply -16 times 512.
x=\frac{-\left(-128\right)±\sqrt{8192}}{2\times 4}
Add 16384 to -8192.
x=\frac{-\left(-128\right)±64\sqrt{2}}{2\times 4}
Take the square root of 8192.
x=\frac{128±64\sqrt{2}}{2\times 4}
The opposite of -128 is 128.
x=\frac{128±64\sqrt{2}}{8}
Multiply 2 times 4.
x=\frac{64\sqrt{2}+128}{8}
Now solve the equation x=\frac{128±64\sqrt{2}}{8} when ± is plus. Add 128 to 64\sqrt{2}.
x=8\sqrt{2}+16
Divide 128+64\sqrt{2} by 8.
x=\frac{128-64\sqrt{2}}{8}
Now solve the equation x=\frac{128±64\sqrt{2}}{8} when ± is minus. Subtract 64\sqrt{2} from 128.
x=16-8\sqrt{2}
Divide 128-64\sqrt{2} by 8.
x=8\sqrt{2}+16 x=16-8\sqrt{2}
The equation is now solved.
\sqrt{3\left(8\sqrt{2}+16\right)-4}-\sqrt{8\sqrt{2}+16-4}=4
Substitute 8\sqrt{2}+16 for x in the equation \sqrt{3x-4}-\sqrt{x-4}=4.
4=4
Simplify. The value x=8\sqrt{2}+16 satisfies the equation.
\sqrt{3\left(16-8\sqrt{2}\right)-4}-\sqrt{16-8\sqrt{2}-4}=4
Substitute 16-8\sqrt{2} for x in the equation \sqrt{3x-4}-\sqrt{x-4}=4.
8-4\times 2^{\frac{1}{2}}=4
Simplify. The value x=16-8\sqrt{2} does not satisfy the equation.
\sqrt{3\left(8\sqrt{2}+16\right)-4}-\sqrt{8\sqrt{2}+16-4}=4
Substitute 8\sqrt{2}+16 for x in the equation \sqrt{3x-4}-\sqrt{x-4}=4.
4=4
Simplify. The value x=8\sqrt{2}+16 satisfies the equation.
x=8\sqrt{2}+16
Equation \sqrt{3x-4}=\sqrt{x-4}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}