Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{3x-2}=28-4x
Subtract 4x from both sides of the equation.
\left(\sqrt{3x-2}\right)^{2}=\left(28-4x\right)^{2}
Square both sides of the equation.
3x-2=\left(28-4x\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
3x-2=784-224x+16x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(28-4x\right)^{2}.
3x-2-784=-224x+16x^{2}
Subtract 784 from both sides.
3x-786=-224x+16x^{2}
Subtract 784 from -2 to get -786.
3x-786+224x=16x^{2}
Add 224x to both sides.
227x-786=16x^{2}
Combine 3x and 224x to get 227x.
227x-786-16x^{2}=0
Subtract 16x^{2} from both sides.
-16x^{2}+227x-786=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-227±\sqrt{227^{2}-4\left(-16\right)\left(-786\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 227 for b, and -786 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-227±\sqrt{51529-4\left(-16\right)\left(-786\right)}}{2\left(-16\right)}
Square 227.
x=\frac{-227±\sqrt{51529+64\left(-786\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-227±\sqrt{51529-50304}}{2\left(-16\right)}
Multiply 64 times -786.
x=\frac{-227±\sqrt{1225}}{2\left(-16\right)}
Add 51529 to -50304.
x=\frac{-227±35}{2\left(-16\right)}
Take the square root of 1225.
x=\frac{-227±35}{-32}
Multiply 2 times -16.
x=-\frac{192}{-32}
Now solve the equation x=\frac{-227±35}{-32} when ± is plus. Add -227 to 35.
x=6
Divide -192 by -32.
x=-\frac{262}{-32}
Now solve the equation x=\frac{-227±35}{-32} when ± is minus. Subtract 35 from -227.
x=\frac{131}{16}
Reduce the fraction \frac{-262}{-32} to lowest terms by extracting and canceling out 2.
x=6 x=\frac{131}{16}
The equation is now solved.
\sqrt{3\times 6-2}+4\times 6=28
Substitute 6 for x in the equation \sqrt{3x-2}+4x=28.
28=28
Simplify. The value x=6 satisfies the equation.
\sqrt{3\times \frac{131}{16}-2}+4\times \frac{131}{16}=28
Substitute \frac{131}{16} for x in the equation \sqrt{3x-2}+4x=28.
\frac{75}{2}=28
Simplify. The value x=\frac{131}{16} does not satisfy the equation.
x=6
Equation \sqrt{3x-2}=28-4x has a unique solution.