Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\sqrt{3x}=3x+5-7
Subtract 7 from both sides of the equation.
\sqrt{3x}=3x-2
Subtract 7 from 5 to get -2.
\left(\sqrt{3x}\right)^{2}=\left(3x-2\right)^{2}
Square both sides of the equation.
3x=\left(3x-2\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x=9x^{2}-12x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
3x-9x^{2}=-12x+4
Subtract 9x^{2} from both sides.
3x-9x^{2}+12x=4
Add 12x to both sides.
15x-9x^{2}=4
Combine 3x and 12x to get 15x.
15x-9x^{2}-4=0
Subtract 4 from both sides.
-9x^{2}+15x-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=15 ab=-9\left(-4\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=12 b=3
The solution is the pair that gives sum 15.
\left(-9x^{2}+12x\right)+\left(3x-4\right)
Rewrite -9x^{2}+15x-4 as \left(-9x^{2}+12x\right)+\left(3x-4\right).
-3x\left(3x-4\right)+3x-4
Factor out -3x in -9x^{2}+12x.
\left(3x-4\right)\left(-3x+1\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=\frac{1}{3}
To find equation solutions, solve 3x-4=0 and -3x+1=0.
\sqrt{3\times \frac{4}{3}}+7=3\times \frac{4}{3}+5
Substitute \frac{4}{3} for x in the equation \sqrt{3x}+7=3x+5.
9=9
Simplify. The value x=\frac{4}{3} satisfies the equation.
\sqrt{3\times \frac{1}{3}}+7=3\times \frac{1}{3}+5
Substitute \frac{1}{3} for x in the equation \sqrt{3x}+7=3x+5.
8=6
Simplify. The value x=\frac{1}{3} does not satisfy the equation.
x=\frac{4}{3}
Equation \sqrt{3x}=3x-2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}