Solve for x
x=\frac{1}{9}\approx 0.111111111
Graph
Share
Copied to clipboard
\sqrt{3x^{2}}-x\times 2\sqrt{3}+2x\sqrt{75}=\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{3x^{2}}-x\times 2\sqrt{3}+2x\times 5\sqrt{3}=\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\sqrt{3x^{2}}-x\times 2\sqrt{3}+10x\sqrt{3}=\sqrt{3}
Multiply 2 and 5 to get 10.
\sqrt{3x^{2}}-2x\sqrt{3}+10x\sqrt{3}=\sqrt{3}
Multiply -1 and 2 to get -2.
\sqrt{3x^{2}}+8x\sqrt{3}=\sqrt{3}
Combine -2x\sqrt{3} and 10x\sqrt{3} to get 8x\sqrt{3}.
\sqrt{3x^{2}}=\sqrt{3}-8x\sqrt{3}
Subtract 8x\sqrt{3} from both sides of the equation.
\left(\sqrt{3x^{2}}\right)^{2}=\left(-8x\sqrt{3}+\sqrt{3}\right)^{2}
Square both sides of the equation.
3x^{2}=\left(-8x\sqrt{3}+\sqrt{3}\right)^{2}
Calculate \sqrt{3x^{2}} to the power of 2 and get 3x^{2}.
3x^{2}=64x^{2}\left(\sqrt{3}\right)^{2}-16x\sqrt{3}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-8x\sqrt{3}+\sqrt{3}\right)^{2}.
3x^{2}=64x^{2}\left(\sqrt{3}\right)^{2}-16x\times 3+\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3x^{2}=64x^{2}\times 3-16x\times 3+\left(\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
3x^{2}=192x^{2}-16x\times 3+\left(\sqrt{3}\right)^{2}
Multiply 64 and 3 to get 192.
3x^{2}=192x^{2}-48x+\left(\sqrt{3}\right)^{2}
Multiply -16 and 3 to get -48.
3x^{2}=192x^{2}-48x+3
The square of \sqrt{3} is 3.
3x^{2}-192x^{2}=-48x+3
Subtract 192x^{2} from both sides.
-189x^{2}=-48x+3
Combine 3x^{2} and -192x^{2} to get -189x^{2}.
-189x^{2}+48x=3
Add 48x to both sides.
-189x^{2}+48x-3=0
Subtract 3 from both sides.
-63x^{2}+16x-1=0
Divide both sides by 3.
a+b=16 ab=-63\left(-1\right)=63
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -63x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,63 3,21 7,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 63.
1+63=64 3+21=24 7+9=16
Calculate the sum for each pair.
a=9 b=7
The solution is the pair that gives sum 16.
\left(-63x^{2}+9x\right)+\left(7x-1\right)
Rewrite -63x^{2}+16x-1 as \left(-63x^{2}+9x\right)+\left(7x-1\right).
-9x\left(7x-1\right)+7x-1
Factor out -9x in -63x^{2}+9x.
\left(7x-1\right)\left(-9x+1\right)
Factor out common term 7x-1 by using distributive property.
x=\frac{1}{7} x=\frac{1}{9}
To find equation solutions, solve 7x-1=0 and -9x+1=0.
\sqrt{3\times \left(\frac{1}{7}\right)^{2}}-\frac{1}{7}\sqrt{12}+2\times \frac{1}{7}\sqrt{75}=\sqrt{3}
Substitute \frac{1}{7} for x in the equation \sqrt{3x^{2}}-x\sqrt{12}+2x\sqrt{75}=\sqrt{3}.
\frac{9}{7}\times 3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value x=\frac{1}{7} does not satisfy the equation.
\sqrt{3\times \left(\frac{1}{9}\right)^{2}}-\frac{1}{9}\sqrt{12}+2\times \frac{1}{9}\sqrt{75}=\sqrt{3}
Substitute \frac{1}{9} for x in the equation \sqrt{3x^{2}}-x\sqrt{12}+2x\sqrt{75}=\sqrt{3}.
3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value x=\frac{1}{9} satisfies the equation.
x=\frac{1}{9}
Equation \sqrt{3x^{2}}=-8\sqrt{3}x+\sqrt{3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}