Solve for x
x=10
Graph
Share
Copied to clipboard
\left(\sqrt{3x+6}\right)^{2}=\left(x-4\right)^{2}
Square both sides of the equation.
3x+6=\left(x-4\right)^{2}
Calculate \sqrt{3x+6} to the power of 2 and get 3x+6.
3x+6=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
3x+6-x^{2}=-8x+16
Subtract x^{2} from both sides.
3x+6-x^{2}+8x=16
Add 8x to both sides.
11x+6-x^{2}=16
Combine 3x and 8x to get 11x.
11x+6-x^{2}-16=0
Subtract 16 from both sides.
11x-10-x^{2}=0
Subtract 16 from 6 to get -10.
-x^{2}+11x-10=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-\left(-10\right)=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=10 b=1
The solution is the pair that gives sum 11.
\left(-x^{2}+10x\right)+\left(x-10\right)
Rewrite -x^{2}+11x-10 as \left(-x^{2}+10x\right)+\left(x-10\right).
-x\left(x-10\right)+x-10
Factor out -x in -x^{2}+10x.
\left(x-10\right)\left(-x+1\right)
Factor out common term x-10 by using distributive property.
x=10 x=1
To find equation solutions, solve x-10=0 and -x+1=0.
\sqrt{3\times 10+6}=10-4
Substitute 10 for x in the equation \sqrt{3x+6}=x-4.
6=6
Simplify. The value x=10 satisfies the equation.
\sqrt{3\times 1+6}=1-4
Substitute 1 for x in the equation \sqrt{3x+6}=x-4.
3=-3
Simplify. The value x=1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=10
Equation \sqrt{3x+6}=x-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}