Solve for x
x=4
Graph
Share
Copied to clipboard
\sqrt{3x+4}=2\sqrt{x}+\sqrt{x-4}
Subtract -\sqrt{x-4} from both sides of the equation.
\left(\sqrt{3x+4}\right)^{2}=\left(2\sqrt{x}+\sqrt{x-4}\right)^{2}
Square both sides of the equation.
3x+4=\left(2\sqrt{x}+\sqrt{x-4}\right)^{2}
Calculate \sqrt{3x+4} to the power of 2 and get 3x+4.
3x+4=4\left(\sqrt{x}\right)^{2}+4\sqrt{x}\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{x}+\sqrt{x-4}\right)^{2}.
3x+4=4x+4\sqrt{x}\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
3x+4=4x+4\sqrt{x}\sqrt{x-4}+x-4
Calculate \sqrt{x-4} to the power of 2 and get x-4.
3x+4=5x+4\sqrt{x}\sqrt{x-4}-4
Combine 4x and x to get 5x.
3x+4-\left(5x-4\right)=4\sqrt{x}\sqrt{x-4}
Subtract 5x-4 from both sides of the equation.
3x+4-5x+4=4\sqrt{x}\sqrt{x-4}
To find the opposite of 5x-4, find the opposite of each term.
-2x+4+4=4\sqrt{x}\sqrt{x-4}
Combine 3x and -5x to get -2x.
-2x+8=4\sqrt{x}\sqrt{x-4}
Add 4 and 4 to get 8.
\left(-2x+8\right)^{2}=\left(4\sqrt{x}\sqrt{x-4}\right)^{2}
Square both sides of the equation.
4x^{2}-32x+64=\left(4\sqrt{x}\sqrt{x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+8\right)^{2}.
4x^{2}-32x+64=4^{2}\left(\sqrt{x}\right)^{2}\left(\sqrt{x-4}\right)^{2}
Expand \left(4\sqrt{x}\sqrt{x-4}\right)^{2}.
4x^{2}-32x+64=16\left(\sqrt{x}\right)^{2}\left(\sqrt{x-4}\right)^{2}
Calculate 4 to the power of 2 and get 16.
4x^{2}-32x+64=16x\left(\sqrt{x-4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x^{2}-32x+64=16x\left(x-4\right)
Calculate \sqrt{x-4} to the power of 2 and get x-4.
4x^{2}-32x+64=16x^{2}-64x
Use the distributive property to multiply 16x by x-4.
4x^{2}-32x+64-16x^{2}=-64x
Subtract 16x^{2} from both sides.
-12x^{2}-32x+64=-64x
Combine 4x^{2} and -16x^{2} to get -12x^{2}.
-12x^{2}-32x+64+64x=0
Add 64x to both sides.
-12x^{2}+32x+64=0
Combine -32x and 64x to get 32x.
-3x^{2}+8x+16=0
Divide both sides by 4.
a+b=8 ab=-3\times 16=-48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=12 b=-4
The solution is the pair that gives sum 8.
\left(-3x^{2}+12x\right)+\left(-4x+16\right)
Rewrite -3x^{2}+8x+16 as \left(-3x^{2}+12x\right)+\left(-4x+16\right).
3x\left(-x+4\right)+4\left(-x+4\right)
Factor out 3x in the first and 4 in the second group.
\left(-x+4\right)\left(3x+4\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-\frac{4}{3}
To find equation solutions, solve -x+4=0 and 3x+4=0.
\sqrt{3\left(-\frac{4}{3}\right)+4}-\sqrt{-\frac{4}{3}-4}=2\sqrt{-\frac{4}{3}}
Substitute -\frac{4}{3} for x in the equation \sqrt{3x+4}-\sqrt{x-4}=2\sqrt{x}. The expression \sqrt{-\frac{4}{3}-4} is undefined because the radicand cannot be negative.
\sqrt{3\times 4+4}-\sqrt{4-4}=2\sqrt{4}
Substitute 4 for x in the equation \sqrt{3x+4}-\sqrt{x-4}=2\sqrt{x}.
4=4
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{3x+4}=\sqrt{x-4}+2\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}