Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
\left(\sqrt{3x+4}\right)^{2}=\left(\frac{3x+1}{2}\right)^{2}
Square both sides of the equation.
3x+4=\left(\frac{3x+1}{2}\right)^{2}
Calculate \sqrt{3x+4} to the power of 2 and get 3x+4.
3x+4=\frac{\left(3x+1\right)^{2}}{2^{2}}
To raise \frac{3x+1}{2} to a power, raise both numerator and denominator to the power and then divide.
3x+4=\frac{9x^{2}+6x+1}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
3x+4=\frac{9x^{2}+6x+1}{4}
Calculate 2 to the power of 2 and get 4.
3x+4=\frac{9}{4}x^{2}+\frac{3}{2}x+\frac{1}{4}
Divide each term of 9x^{2}+6x+1 by 4 to get \frac{9}{4}x^{2}+\frac{3}{2}x+\frac{1}{4}.
3x+4-\frac{9}{4}x^{2}=\frac{3}{2}x+\frac{1}{4}
Subtract \frac{9}{4}x^{2} from both sides.
3x+4-\frac{9}{4}x^{2}-\frac{3}{2}x=\frac{1}{4}
Subtract \frac{3}{2}x from both sides.
\frac{3}{2}x+4-\frac{9}{4}x^{2}=\frac{1}{4}
Combine 3x and -\frac{3}{2}x to get \frac{3}{2}x.
\frac{3}{2}x+4-\frac{9}{4}x^{2}-\frac{1}{4}=0
Subtract \frac{1}{4} from both sides.
\frac{3}{2}x+\frac{15}{4}-\frac{9}{4}x^{2}=0
Subtract \frac{1}{4} from 4 to get \frac{15}{4}.
-\frac{9}{4}x^{2}+\frac{3}{2}x+\frac{15}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{9}{4}\right)\times \frac{15}{4}}}{2\left(-\frac{9}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{9}{4} for a, \frac{3}{2} for b, and \frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{9}{4}\right)\times \frac{15}{4}}}{2\left(-\frac{9}{4}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+9\times \frac{15}{4}}}{2\left(-\frac{9}{4}\right)}
Multiply -4 times -\frac{9}{4}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9+135}{4}}}{2\left(-\frac{9}{4}\right)}
Multiply 9 times \frac{15}{4}.
x=\frac{-\frac{3}{2}±\sqrt{36}}{2\left(-\frac{9}{4}\right)}
Add \frac{9}{4} to \frac{135}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{3}{2}±6}{2\left(-\frac{9}{4}\right)}
Take the square root of 36.
x=\frac{-\frac{3}{2}±6}{-\frac{9}{2}}
Multiply 2 times -\frac{9}{4}.
x=\frac{\frac{9}{2}}{-\frac{9}{2}}
Now solve the equation x=\frac{-\frac{3}{2}±6}{-\frac{9}{2}} when ± is plus. Add -\frac{3}{2} to 6.
x=-1
Divide \frac{9}{2} by -\frac{9}{2} by multiplying \frac{9}{2} by the reciprocal of -\frac{9}{2}.
x=-\frac{\frac{15}{2}}{-\frac{9}{2}}
Now solve the equation x=\frac{-\frac{3}{2}±6}{-\frac{9}{2}} when ± is minus. Subtract 6 from -\frac{3}{2}.
x=\frac{5}{3}
Divide -\frac{15}{2} by -\frac{9}{2} by multiplying -\frac{15}{2} by the reciprocal of -\frac{9}{2}.
x=-1 x=\frac{5}{3}
The equation is now solved.
\sqrt{3\left(-1\right)+4}=\frac{3\left(-1\right)+1}{2}
Substitute -1 for x in the equation \sqrt{3x+4}=\frac{3x+1}{2}.
1=-1
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{3\times \frac{5}{3}+4}=\frac{3\times \frac{5}{3}+1}{2}
Substitute \frac{5}{3} for x in the equation \sqrt{3x+4}=\frac{3x+1}{2}.
3=3
Simplify. The value x=\frac{5}{3} satisfies the equation.
x=\frac{5}{3}
Equation \sqrt{3x+4}=\frac{3x+1}{2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}