Solve for x
x=-2
Graph
Share
Copied to clipboard
\left(\sqrt{3x+22}\right)^{2}=\left(x+6\right)^{2}
Square both sides of the equation.
3x+22=\left(x+6\right)^{2}
Calculate \sqrt{3x+22} to the power of 2 and get 3x+22.
3x+22=x^{2}+12x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
3x+22-x^{2}=12x+36
Subtract x^{2} from both sides.
3x+22-x^{2}-12x=36
Subtract 12x from both sides.
-9x+22-x^{2}=36
Combine 3x and -12x to get -9x.
-9x+22-x^{2}-36=0
Subtract 36 from both sides.
-9x-14-x^{2}=0
Subtract 36 from 22 to get -14.
-x^{2}-9x-14=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-9 ab=-\left(-14\right)=14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-14. To find a and b, set up a system to be solved.
-1,-14 -2,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 14.
-1-14=-15 -2-7=-9
Calculate the sum for each pair.
a=-2 b=-7
The solution is the pair that gives sum -9.
\left(-x^{2}-2x\right)+\left(-7x-14\right)
Rewrite -x^{2}-9x-14 as \left(-x^{2}-2x\right)+\left(-7x-14\right).
x\left(-x-2\right)+7\left(-x-2\right)
Factor out x in the first and 7 in the second group.
\left(-x-2\right)\left(x+7\right)
Factor out common term -x-2 by using distributive property.
x=-2 x=-7
To find equation solutions, solve -x-2=0 and x+7=0.
\sqrt{3\left(-2\right)+22}=-2+6
Substitute -2 for x in the equation \sqrt{3x+22}=x+6.
4=4
Simplify. The value x=-2 satisfies the equation.
\sqrt{3\left(-7\right)+22}=-7+6
Substitute -7 for x in the equation \sqrt{3x+22}=x+6.
1=-1
Simplify. The value x=-7 does not satisfy the equation because the left and the right hand side have opposite signs.
x=-2
Equation \sqrt{3x+22}=x+6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}