Solve for x
x=\frac{\sqrt{41}-5}{2}\approx 0.701562119
Graph
Share
Copied to clipboard
\sqrt{3x+20}=x+4
Subtract -4 from both sides of the equation.
\left(\sqrt{3x+20}\right)^{2}=\left(x+4\right)^{2}
Square both sides of the equation.
3x+20=\left(x+4\right)^{2}
Calculate \sqrt{3x+20} to the power of 2 and get 3x+20.
3x+20=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x+20-x^{2}=8x+16
Subtract x^{2} from both sides.
3x+20-x^{2}-8x=16
Subtract 8x from both sides.
-5x+20-x^{2}=16
Combine 3x and -8x to get -5x.
-5x+20-x^{2}-16=0
Subtract 16 from both sides.
-5x+4-x^{2}=0
Subtract 16 from 20 to get 4.
-x^{2}-5x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25+16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{-\left(-5\right)±\sqrt{41}}{2\left(-1\right)}
Add 25 to 16.
x=\frac{5±\sqrt{41}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{41}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{41}}{-2} when ± is plus. Add 5 to \sqrt{41}.
x=\frac{-\sqrt{41}-5}{2}
Divide 5+\sqrt{41} by -2.
x=\frac{5-\sqrt{41}}{-2}
Now solve the equation x=\frac{5±\sqrt{41}}{-2} when ± is minus. Subtract \sqrt{41} from 5.
x=\frac{\sqrt{41}-5}{2}
Divide 5-\sqrt{41} by -2.
x=\frac{-\sqrt{41}-5}{2} x=\frac{\sqrt{41}-5}{2}
The equation is now solved.
\sqrt{3\times \frac{-\sqrt{41}-5}{2}+20}-4=\frac{-\sqrt{41}-5}{2}
Substitute \frac{-\sqrt{41}-5}{2} for x in the equation \sqrt{3x+20}-4=x.
-\frac{11}{2}+\frac{1}{2}\times 41^{\frac{1}{2}}=-\frac{1}{2}\times 41^{\frac{1}{2}}-\frac{5}{2}
Simplify. The value x=\frac{-\sqrt{41}-5}{2} does not satisfy the equation.
\sqrt{3\times \frac{\sqrt{41}-5}{2}+20}-4=\frac{\sqrt{41}-5}{2}
Substitute \frac{\sqrt{41}-5}{2} for x in the equation \sqrt{3x+20}-4=x.
-\frac{5}{2}+\frac{1}{2}\times 41^{\frac{1}{2}}=\frac{1}{2}\times 41^{\frac{1}{2}}-\frac{5}{2}
Simplify. The value x=\frac{\sqrt{41}-5}{2} satisfies the equation.
x=\frac{\sqrt{41}-5}{2}
Equation \sqrt{3x+20}=x+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}