Solve for x
x=-4
Graph
Share
Copied to clipboard
\sqrt{3x+13}=1-\sqrt{x+4}
Subtract \sqrt{x+4} from both sides of the equation.
\left(\sqrt{3x+13}\right)^{2}=\left(1-\sqrt{x+4}\right)^{2}
Square both sides of the equation.
3x+13=\left(1-\sqrt{x+4}\right)^{2}
Calculate \sqrt{3x+13} to the power of 2 and get 3x+13.
3x+13=1-2\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{x+4}\right)^{2}.
3x+13=1-2\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
3x+13=5-2\sqrt{x+4}+x
Add 1 and 4 to get 5.
3x+13-\left(5+x\right)=-2\sqrt{x+4}
Subtract 5+x from both sides of the equation.
3x+13-5-x=-2\sqrt{x+4}
To find the opposite of 5+x, find the opposite of each term.
3x+8-x=-2\sqrt{x+4}
Subtract 5 from 13 to get 8.
2x+8=-2\sqrt{x+4}
Combine 3x and -x to get 2x.
\left(2x+8\right)^{2}=\left(-2\sqrt{x+4}\right)^{2}
Square both sides of the equation.
4x^{2}+32x+64=\left(-2\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+8\right)^{2}.
4x^{2}+32x+64=\left(-2\right)^{2}\left(\sqrt{x+4}\right)^{2}
Expand \left(-2\sqrt{x+4}\right)^{2}.
4x^{2}+32x+64=4\left(\sqrt{x+4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x^{2}+32x+64=4\left(x+4\right)
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4x^{2}+32x+64=4x+16
Use the distributive property to multiply 4 by x+4.
4x^{2}+32x+64-4x=16
Subtract 4x from both sides.
4x^{2}+28x+64=16
Combine 32x and -4x to get 28x.
4x^{2}+28x+64-16=0
Subtract 16 from both sides.
4x^{2}+28x+48=0
Subtract 16 from 64 to get 48.
x^{2}+7x+12=0
Divide both sides by 4.
a+b=7 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=3 b=4
The solution is the pair that gives sum 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
Rewrite x^{2}+7x+12 as \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
Factor out x in the first and 4 in the second group.
\left(x+3\right)\left(x+4\right)
Factor out common term x+3 by using distributive property.
x=-3 x=-4
To find equation solutions, solve x+3=0 and x+4=0.
\sqrt{3\left(-3\right)+13}+\sqrt{-3+4}=1
Substitute -3 for x in the equation \sqrt{3x+13}+\sqrt{x+4}=1.
3=1
Simplify. The value x=-3 does not satisfy the equation.
\sqrt{3\left(-4\right)+13}+\sqrt{-4+4}=1
Substitute -4 for x in the equation \sqrt{3x+13}+\sqrt{x+4}=1.
1=1
Simplify. The value x=-4 satisfies the equation.
x=-4
Equation \sqrt{3x+13}=-\sqrt{x+4}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}