Solve for u
u=5
Share
Copied to clipboard
\sqrt{3u-5}=\sqrt{5u-15}
Subtract -\sqrt{5u-15} from both sides of the equation.
\left(\sqrt{3u-5}\right)^{2}=\left(\sqrt{5u-15}\right)^{2}
Square both sides of the equation.
3u-5=\left(\sqrt{5u-15}\right)^{2}
Calculate \sqrt{3u-5} to the power of 2 and get 3u-5.
3u-5=5u-15
Calculate \sqrt{5u-15} to the power of 2 and get 5u-15.
3u-5-5u=-15
Subtract 5u from both sides.
-2u-5=-15
Combine 3u and -5u to get -2u.
-2u=-15+5
Add 5 to both sides.
-2u=-10
Add -15 and 5 to get -10.
u=\frac{-10}{-2}
Divide both sides by -2.
u=5
Divide -10 by -2 to get 5.
\sqrt{3\times 5-5}-\sqrt{5\times 5-15}=0
Substitute 5 for u in the equation \sqrt{3u-5}-\sqrt{5u-15}=0.
0=0
Simplify. The value u=5 satisfies the equation.
u=5
Equation \sqrt{3u-5}=\sqrt{5u-15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}