Solve for n
n=-2
Share
Copied to clipboard
\left(\sqrt{3n+12}\right)^{2}=\left(\sqrt{n+8}\right)^{2}
Square both sides of the equation.
3n+12=\left(\sqrt{n+8}\right)^{2}
Calculate \sqrt{3n+12} to the power of 2 and get 3n+12.
3n+12=n+8
Calculate \sqrt{n+8} to the power of 2 and get n+8.
3n+12-n=8
Subtract n from both sides.
2n+12=8
Combine 3n and -n to get 2n.
2n=8-12
Subtract 12 from both sides.
2n=-4
Subtract 12 from 8 to get -4.
n=\frac{-4}{2}
Divide both sides by 2.
n=-2
Divide -4 by 2 to get -2.
\sqrt{3\left(-2\right)+12}=\sqrt{-2+8}
Substitute -2 for n in the equation \sqrt{3n+12}=\sqrt{n+8}.
6^{\frac{1}{2}}=6^{\frac{1}{2}}
Simplify. The value n=-2 satisfies the equation.
n=-2
Equation \sqrt{3n+12}=\sqrt{n+8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}