Solve for k
k=14
Share
Copied to clipboard
\left(\sqrt{3k-29}\right)^{2}=\left(\sqrt{41-2k}\right)^{2}
Square both sides of the equation.
3k-29=\left(\sqrt{41-2k}\right)^{2}
Calculate \sqrt{3k-29} to the power of 2 and get 3k-29.
3k-29=41-2k
Calculate \sqrt{41-2k} to the power of 2 and get 41-2k.
3k-29+2k=41
Add 2k to both sides.
5k-29=41
Combine 3k and 2k to get 5k.
5k=41+29
Add 29 to both sides.
5k=70
Add 41 and 29 to get 70.
k=\frac{70}{5}
Divide both sides by 5.
k=14
Divide 70 by 5 to get 14.
\sqrt{3\times 14-29}=\sqrt{41-2\times 14}
Substitute 14 for k in the equation \sqrt{3k-29}=\sqrt{41-2k}.
13^{\frac{1}{2}}=13^{\frac{1}{2}}
Simplify. The value k=14 satisfies the equation.
k=14
Equation \sqrt{3k-29}=\sqrt{41-2k} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}