Solve for a
a=\frac{3+\sqrt{23}i}{4}\approx 0.75+1.198957881i
Share
Copied to clipboard
\left(\sqrt{3a-4}\right)^{2}=\left(\sqrt{2}a\right)^{2}
Square both sides of the equation.
3a-4=\left(\sqrt{2}a\right)^{2}
Calculate \sqrt{3a-4} to the power of 2 and get 3a-4.
3a-4=\left(\sqrt{2}\right)^{2}a^{2}
Expand \left(\sqrt{2}a\right)^{2}.
3a-4=2a^{2}
The square of \sqrt{2} is 2.
3a-4-2a^{2}=0
Subtract 2a^{2} from both sides.
-2a^{2}+3a-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 3.
a=\frac{-3±\sqrt{9+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-3±\sqrt{9-32}}{2\left(-2\right)}
Multiply 8 times -4.
a=\frac{-3±\sqrt{-23}}{2\left(-2\right)}
Add 9 to -32.
a=\frac{-3±\sqrt{23}i}{2\left(-2\right)}
Take the square root of -23.
a=\frac{-3±\sqrt{23}i}{-4}
Multiply 2 times -2.
a=\frac{-3+\sqrt{23}i}{-4}
Now solve the equation a=\frac{-3±\sqrt{23}i}{-4} when ± is plus. Add -3 to i\sqrt{23}.
a=\frac{-\sqrt{23}i+3}{4}
Divide -3+i\sqrt{23} by -4.
a=\frac{-\sqrt{23}i-3}{-4}
Now solve the equation a=\frac{-3±\sqrt{23}i}{-4} when ± is minus. Subtract i\sqrt{23} from -3.
a=\frac{3+\sqrt{23}i}{4}
Divide -3-i\sqrt{23} by -4.
a=\frac{-\sqrt{23}i+3}{4} a=\frac{3+\sqrt{23}i}{4}
The equation is now solved.
\sqrt{3\times \frac{-\sqrt{23}i+3}{4}-4}=\sqrt{2}\times \frac{-\sqrt{23}i+3}{4}
Substitute \frac{-\sqrt{23}i+3}{4} for a in the equation \sqrt{3a-4}=\sqrt{2}a.
-\frac{3}{4}\times 2^{\frac{1}{2}}+\frac{1}{4}i\times 46^{\frac{1}{2}}=\frac{1}{4}\times 2^{\frac{1}{2}}\left(-i\times 23^{\frac{1}{2}}+3\right)
Simplify. The value a=\frac{-\sqrt{23}i+3}{4} does not satisfy the equation.
\sqrt{3\times \frac{3+\sqrt{23}i}{4}-4}=\sqrt{2}\times \frac{3+\sqrt{23}i}{4}
Substitute \frac{3+\sqrt{23}i}{4} for a in the equation \sqrt{3a-4}=\sqrt{2}a.
\frac{3}{4}\times 2^{\frac{1}{2}}+\frac{1}{4}i\times 46^{\frac{1}{2}}=\frac{1}{4}\times 2^{\frac{1}{2}}\left(3+i\times 23^{\frac{1}{2}}\right)
Simplify. The value a=\frac{3+\sqrt{23}i}{4} satisfies the equation.
a=\frac{3+\sqrt{23}i}{4}
Equation \sqrt{3a-4}=\sqrt{2}a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}