Solve for a
a=0
Share
Copied to clipboard
\left(\sqrt{3a}-\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3a}\right)^{2}-2\sqrt{3a}\sqrt{2a}+\left(\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3a}-\sqrt{2a}\right)^{2}.
3a-2\sqrt{3a}\sqrt{2a}+\left(\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Calculate \sqrt{3a} to the power of 2 and get 3a.
3a-2\sqrt{3a}\sqrt{2a}+2a=\left(\sqrt{a}\right)^{2}
Calculate \sqrt{2a} to the power of 2 and get 2a.
5a-2\sqrt{3a}\sqrt{2a}=\left(\sqrt{a}\right)^{2}
Combine 3a and 2a to get 5a.
5a-2\sqrt{3a}\sqrt{2a}=a
Calculate \sqrt{a} to the power of 2 and get a.
-2\sqrt{3a}\sqrt{2a}=a-5a
Subtract 5a from both sides of the equation.
-2\sqrt{3a}\sqrt{2a}=-4a
Combine a and -5a to get -4a.
\left(-2\sqrt{3a}\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{3a}\right)^{2}\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Expand \left(-2\sqrt{3a}\sqrt{2a}\right)^{2}.
4\left(\sqrt{3a}\right)^{2}\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\times 3a\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Calculate \sqrt{3a} to the power of 2 and get 3a.
12a\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Multiply 4 and 3 to get 12.
12a\times 2a=\left(-4a\right)^{2}
Calculate \sqrt{2a} to the power of 2 and get 2a.
24aa=\left(-4a\right)^{2}
Multiply 12 and 2 to get 24.
24a^{2}=\left(-4a\right)^{2}
Multiply a and a to get a^{2}.
24a^{2}=\left(-4\right)^{2}a^{2}
Expand \left(-4a\right)^{2}.
24a^{2}=16a^{2}
Calculate -4 to the power of 2 and get 16.
24a^{2}-16a^{2}=0
Subtract 16a^{2} from both sides.
8a^{2}=0
Combine 24a^{2} and -16a^{2} to get 8a^{2}.
a^{2}=0
Divide both sides by 8. Zero divided by any non-zero number gives zero.
a=0 a=0
Take the square root of both sides of the equation.
a=0
The equation is now solved. Solutions are the same.
\sqrt{3\times 0}-\sqrt{2\times 0}=\sqrt{0}
Substitute 0 for a in the equation \sqrt{3a}-\sqrt{2a}=\sqrt{a}.
0=0
Simplify. The value a=0 satisfies the equation.
a=0
Equation \sqrt{3a}-\sqrt{2a}=\sqrt{a} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}