Solve for x (complex solution)
x = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
Graph
Share
Copied to clipboard
\left(\sqrt{3-3x}\right)^{2}=\left(\sqrt{4x-10}\right)^{2}
Square both sides of the equation.
3-3x=\left(\sqrt{4x-10}\right)^{2}
Calculate \sqrt{3-3x} to the power of 2 and get 3-3x.
3-3x=4x-10
Calculate \sqrt{4x-10} to the power of 2 and get 4x-10.
3-3x-4x=-10
Subtract 4x from both sides.
3-7x=-10
Combine -3x and -4x to get -7x.
-7x=-10-3
Subtract 3 from both sides.
-7x=-13
Subtract 3 from -10 to get -13.
x=\frac{-13}{-7}
Divide both sides by -7.
x=\frac{13}{7}
Fraction \frac{-13}{-7} can be simplified to \frac{13}{7} by removing the negative sign from both the numerator and the denominator.
\sqrt{3-3\times \frac{13}{7}}=\sqrt{4\times \frac{13}{7}-10}
Substitute \frac{13}{7} for x in the equation \sqrt{3-3x}=\sqrt{4x-10}.
\frac{3}{7}i\times 14^{\frac{1}{2}}=\frac{3}{7}i\times 14^{\frac{1}{2}}
Simplify. The value x=\frac{13}{7} satisfies the equation.
x=\frac{13}{7}
Equation \sqrt{3-3x}=\sqrt{4x-10} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}