Evaluate
\frac{2\sqrt{42}}{3}\approx 4.320493799
Share
Copied to clipboard
\sqrt{3\left(-3\right)^{2}+\frac{7-4\times 2^{3}}{3}}
Subtract 5 from 2 to get -3.
\sqrt{3\times 9+\frac{7-4\times 2^{3}}{3}}
Calculate -3 to the power of 2 and get 9.
\sqrt{27+\frac{7-4\times 2^{3}}{3}}
Multiply 3 and 9 to get 27.
\sqrt{27+\frac{7-4\times 8}{3}}
Calculate 2 to the power of 3 and get 8.
\sqrt{27+\frac{7-32}{3}}
Multiply 4 and 8 to get 32.
\sqrt{27+\frac{-25}{3}}
Subtract 32 from 7 to get -25.
\sqrt{27-\frac{25}{3}}
Fraction \frac{-25}{3} can be rewritten as -\frac{25}{3} by extracting the negative sign.
\sqrt{\frac{56}{3}}
Subtract \frac{25}{3} from 27 to get \frac{56}{3}.
\frac{\sqrt{56}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{56}{3}} as the division of square roots \frac{\sqrt{56}}{\sqrt{3}}.
\frac{2\sqrt{14}}{\sqrt{3}}
Factor 56=2^{2}\times 14. Rewrite the square root of the product \sqrt{2^{2}\times 14} as the product of square roots \sqrt{2^{2}}\sqrt{14}. Take the square root of 2^{2}.
\frac{2\sqrt{14}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{14}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{14}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{42}}{3}
To multiply \sqrt{14} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}