Solve for x
x=\frac{2\sqrt{6}y}{3}
Solve for y
y=\frac{\sqrt{6}x}{4}
Graph
Share
Copied to clipboard
\sqrt{3}x-2\sqrt{2}y=0
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\sqrt{3}x=0+2\sqrt{2}y
Add 2\sqrt{2}y to both sides.
\sqrt{3}x=2\sqrt{2}y
Anything plus zero gives itself.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{2\sqrt{2}y}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{2\sqrt{2}y}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\frac{2\sqrt{6}y}{3}
Divide 2y\sqrt{2} by \sqrt{3}.
\sqrt{3}x-2\sqrt{2}y=0
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-2\sqrt{2}y=-\sqrt{3}x
Subtract \sqrt{3}x from both sides. Anything subtracted from zero gives its negation.
\left(-2\sqrt{2}\right)y=-\sqrt{3}x
The equation is in standard form.
\frac{\left(-2\sqrt{2}\right)y}{-2\sqrt{2}}=-\frac{\sqrt{3}x}{-2\sqrt{2}}
Divide both sides by -2\sqrt{2}.
y=-\frac{\sqrt{3}x}{-2\sqrt{2}}
Dividing by -2\sqrt{2} undoes the multiplication by -2\sqrt{2}.
y=\frac{\sqrt{6}x}{4}
Divide -\sqrt{3}x by -2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}