Solve for x
x = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
Graph
Share
Copied to clipboard
\left(\sqrt{3}-\sqrt{x}\right)^{2}=\left(\sqrt{x-2}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{x}+\left(\sqrt{x}\right)^{2}=\left(\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{x}\right)^{2}.
3-2\sqrt{3}\sqrt{x}+\left(\sqrt{x}\right)^{2}=\left(\sqrt{x-2}\right)^{2}
The square of \sqrt{3} is 3.
3-2\sqrt{3}\sqrt{x}+x=\left(\sqrt{x-2}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
3-2\sqrt{3}\sqrt{x}+x=x-2
Calculate \sqrt{x-2} to the power of 2 and get x-2.
3-2\sqrt{3}\sqrt{x}+x-x=-2
Subtract x from both sides.
3-2\sqrt{3}\sqrt{x}=-2
Combine x and -x to get 0.
-2\sqrt{3}\sqrt{x}=-2-3
Subtract 3 from both sides.
-2\sqrt{3}\sqrt{x}=-5
Subtract 3 from -2 to get -5.
\frac{\left(-2\sqrt{3}\right)\sqrt{x}}{-2\sqrt{3}}=-\frac{5}{-2\sqrt{3}}
Divide both sides by -2\sqrt{3}.
\sqrt{x}=-\frac{5}{-2\sqrt{3}}
Dividing by -2\sqrt{3} undoes the multiplication by -2\sqrt{3}.
\sqrt{x}=\frac{5\sqrt{3}}{6}
Divide -5 by -2\sqrt{3}.
x=\frac{25}{12}
Square both sides of the equation.
\sqrt{3}-\sqrt{\frac{25}{12}}=\sqrt{\frac{25}{12}-2}
Substitute \frac{25}{12} for x in the equation \sqrt{3}-\sqrt{x}=\sqrt{x-2}.
\frac{1}{6}\times 3^{\frac{1}{2}}=\frac{1}{6}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{25}{12} satisfies the equation.
x=\frac{25}{12}
Equation -\sqrt{x}+\sqrt{3}=\sqrt{x-2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}