Evaluate
\sqrt{3}-\sqrt{7}\approx -0.913700503
Share
Copied to clipboard
\sqrt{3}-2\sqrt{7}+21\sqrt{\frac{1}{63}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{1}}{\sqrt{63}}
Rewrite the square root of the division \sqrt{\frac{1}{63}} as the division of square roots \frac{\sqrt{1}}{\sqrt{63}}.
\sqrt{3}-2\sqrt{7}+21\times \frac{1}{\sqrt{63}}
Calculate the square root of 1 and get 1.
\sqrt{3}-2\sqrt{7}+21\times \frac{1}{3\sqrt{7}}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{3\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{1}{3\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{3\times 7}
The square of \sqrt{7} is 7.
\sqrt{3}-2\sqrt{7}+21\times \frac{\sqrt{7}}{21}
Multiply 3 and 7 to get 21.
\sqrt{3}-2\sqrt{7}+\sqrt{7}
Cancel out 21 and 21.
\sqrt{3}-\sqrt{7}
Combine -2\sqrt{7} and \sqrt{7} to get -\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}