Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3}\left(\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-\sqrt{3}\right)^{2}.
\sqrt{3}\left(2-2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{2} is 2.
\sqrt{3}\left(2-2\sqrt{6}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{3}\left(2-2\sqrt{6}+3\right)
The square of \sqrt{3} is 3.
\sqrt{3}\left(5-2\sqrt{6}\right)
Add 2 and 3 to get 5.
5\sqrt{3}-2\sqrt{3}\sqrt{6}
Use the distributive property to multiply \sqrt{3} by 5-2\sqrt{6}.
5\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
5\sqrt{3}-2\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
5\sqrt{3}-6\sqrt{2}
Multiply -2 and 3 to get -6.