Evaluate
\sqrt{399}+2\approx 21.974984355
Quiz
Arithmetic
5 problems similar to:
\sqrt { 3 } \cdot ( \sqrt { 133 } + \frac { 2 } { \sqrt { 3 } } )
Share
Copied to clipboard
\sqrt{3}\left(\sqrt{133}+\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}\left(\sqrt{133}+\frac{2\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\sqrt{3}\left(\frac{3\sqrt{133}}{3}+\frac{2\sqrt{3}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{133} times \frac{3}{3}.
\sqrt{3}\times \frac{3\sqrt{133}+2\sqrt{3}}{3}
Since \frac{3\sqrt{133}}{3} and \frac{2\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}\left(3\sqrt{133}+2\sqrt{3}\right)}{3}
Express \sqrt{3}\times \frac{3\sqrt{133}+2\sqrt{3}}{3} as a single fraction.
\frac{3\sqrt{3}\sqrt{133}+2\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply \sqrt{3} by 3\sqrt{133}+2\sqrt{3}.
\frac{3\sqrt{399}+2\left(\sqrt{3}\right)^{2}}{3}
To multiply \sqrt{3} and \sqrt{133}, multiply the numbers under the square root.
\frac{3\sqrt{399}+2\times 3}{3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{399}+6}{3}
Multiply 2 and 3 to get 6.
\sqrt{399}+2
Divide each term of 3\sqrt{399}+6 by 3 to get \sqrt{399}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}