Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3}\left(\sqrt{133}+\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}\left(\sqrt{133}+\frac{2\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\sqrt{3}\left(\frac{3\sqrt{133}}{3}+\frac{2\sqrt{3}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{133} times \frac{3}{3}.
\sqrt{3}\times \frac{3\sqrt{133}+2\sqrt{3}}{3}
Since \frac{3\sqrt{133}}{3} and \frac{2\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}\left(3\sqrt{133}+2\sqrt{3}\right)}{3}
Express \sqrt{3}\times \frac{3\sqrt{133}+2\sqrt{3}}{3} as a single fraction.
\frac{3\sqrt{3}\sqrt{133}+2\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply \sqrt{3} by 3\sqrt{133}+2\sqrt{3}.
\frac{3\sqrt{399}+2\left(\sqrt{3}\right)^{2}}{3}
To multiply \sqrt{3} and \sqrt{133}, multiply the numbers under the square root.
\frac{3\sqrt{399}+2\times 3}{3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{399}+6}{3}
Multiply 2 and 3 to get 6.
\sqrt{399}+2
Divide each term of 3\sqrt{399}+6 by 3 to get \sqrt{399}+2.