Solve for x
x=-5\sqrt{3}-15\approx -23.660254038
Graph
Share
Copied to clipboard
\left(x+10\right)\sqrt{3}=x
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by x+10.
x\sqrt{3}+10\sqrt{3}=x
Use the distributive property to multiply x+10 by \sqrt{3}.
x\sqrt{3}+10\sqrt{3}-x=0
Subtract x from both sides.
x\sqrt{3}-x=-10\sqrt{3}
Subtract 10\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
\left(\sqrt{3}-1\right)x=-10\sqrt{3}
Combine all terms containing x.
\frac{\left(\sqrt{3}-1\right)x}{\sqrt{3}-1}=-\frac{10\sqrt{3}}{\sqrt{3}-1}
Divide both sides by \sqrt{3}-1.
x=-\frac{10\sqrt{3}}{\sqrt{3}-1}
Dividing by \sqrt{3}-1 undoes the multiplication by \sqrt{3}-1.
x=-5\sqrt{3}-15
Divide -10\sqrt{3} by \sqrt{3}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}