Evaluate
\frac{3\sqrt{6}}{4}-12\approx -10.162882693
Share
Copied to clipboard
\sqrt{\frac{24+3}{8}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Multiply 3 and 8 to get 24.
\sqrt{\frac{27}{8}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Add 24 and 3 to get 27.
\frac{\sqrt{27}}{\sqrt{8}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Rewrite the square root of the division \sqrt{\frac{27}{8}} as the division of square roots \frac{\sqrt{27}}{\sqrt{8}}.
\frac{3\sqrt{3}}{\sqrt{8}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{3\sqrt{3}}{2\sqrt{2}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Rationalize the denominator of \frac{3\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{3}\sqrt{2}}{2\times 2}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
The square of \sqrt{2} is 2.
\frac{3\sqrt{6}}{2\times 2}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{6}}{4}-\frac{\sqrt{\frac{13\times 2+1}{2}}}{\sqrt{\frac{3}{32}}}
Multiply 2 and 2 to get 4.
\frac{3\sqrt{6}}{4}-\frac{\sqrt{\frac{26+1}{2}}}{\sqrt{\frac{3}{32}}}
Multiply 13 and 2 to get 26.
\frac{3\sqrt{6}}{4}-\frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{3}{32}}}
Add 26 and 1 to get 27.
\frac{3\sqrt{6}}{4}-\frac{\frac{\sqrt{27}}{\sqrt{2}}}{\sqrt{\frac{3}{32}}}
Rewrite the square root of the division \sqrt{\frac{27}{2}} as the division of square roots \frac{\sqrt{27}}{\sqrt{2}}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{3}}{\sqrt{2}}}{\sqrt{\frac{3}{32}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{3}{32}}}
Rationalize the denominator of \frac{3\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{3}\sqrt{2}}{2}}{\sqrt{\frac{3}{32}}}
The square of \sqrt{2} is 2.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\sqrt{\frac{3}{32}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{3}}{\sqrt{32}}}
Rewrite the square root of the division \sqrt{\frac{3}{32}} as the division of square roots \frac{\sqrt{3}}{\sqrt{32}}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{3}}{4\sqrt{2}}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{3}\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{3}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{3}\sqrt{2}}{4\times 2}}
The square of \sqrt{2} is 2.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{6}}{4\times 2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{6}}{4}-\frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{6}}{8}}
Multiply 4 and 2 to get 8.
\frac{3\sqrt{6}}{4}-\frac{3\sqrt{6}\times 8}{2\sqrt{6}}
Divide \frac{3\sqrt{6}}{2} by \frac{\sqrt{6}}{8} by multiplying \frac{3\sqrt{6}}{2} by the reciprocal of \frac{\sqrt{6}}{8}.
\frac{3\sqrt{6}}{4}-3\times 4
Cancel out 2\sqrt{6} in both numerator and denominator.
\frac{3\sqrt{6}}{4}-12
Multiply 3 and 4 to get 12.
\frac{3\sqrt{6}}{4}-\frac{12\times 4}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{4}{4}.
\frac{3\sqrt{6}-12\times 4}{4}
Since \frac{3\sqrt{6}}{4} and \frac{12\times 4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{3\sqrt{6}-48}{4}
Do the multiplications in 3\sqrt{6}-12\times 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}