Evaluate
\frac{4\sqrt{30}}{3}\approx 7.302967433
Share
Copied to clipboard
4\times \frac{\sqrt{\frac{9+1}{3}}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
Multiply 3 and 3 to get 9.
4\times \frac{\sqrt{\frac{10}{3}}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
Add 9 and 1 to get 10.
4\times \frac{\frac{\sqrt{10}}{\sqrt{3}}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{10}{3}} as the division of square roots \frac{\sqrt{10}}{\sqrt{3}}.
4\times \frac{\frac{\sqrt{10}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\times \frac{\frac{\sqrt{10}\sqrt{3}}{3}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\sqrt{\frac{2\times 2+1}{2}}}\sqrt{\frac{2}{5}}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\sqrt{\frac{4+1}{2}}}\sqrt{\frac{2}{5}}
Multiply 2 and 2 to get 4.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\sqrt{\frac{5}{2}}}\sqrt{\frac{2}{5}}
Add 4 and 1 to get 5.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\times \frac{\sqrt{5}}{\sqrt{2}}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\times \frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\times \frac{\sqrt{5}\sqrt{2}}{2}}\sqrt{\frac{2}{5}}
The square of \sqrt{2} is 2.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}\times \frac{\sqrt{10}}{2}}\sqrt{\frac{2}{5}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2\sqrt{10}}{5\times 2}}\sqrt{\frac{2}{5}}
Multiply \frac{2}{5} times \frac{\sqrt{10}}{2} by multiplying numerator times numerator and denominator times denominator.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{\sqrt{10}}{5}}\sqrt{\frac{2}{5}}
Cancel out 2 in both numerator and denominator.
4\times \frac{\sqrt{30}\times 5}{3\sqrt{10}}\sqrt{\frac{2}{5}}
Divide \frac{\sqrt{30}}{3} by \frac{\sqrt{10}}{5} by multiplying \frac{\sqrt{30}}{3} by the reciprocal of \frac{\sqrt{10}}{5}.
4\times \frac{\sqrt{30}\times 5\sqrt{10}}{3\left(\sqrt{10}\right)^{2}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{30}\times 5}{3\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
4\times \frac{\sqrt{30}\times 5\sqrt{10}}{3\times 10}\sqrt{\frac{2}{5}}
The square of \sqrt{10} is 10.
4\times \frac{\sqrt{10}\sqrt{3}\times 5\sqrt{10}}{3\times 10}\sqrt{\frac{2}{5}}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
4\times \frac{10\times 5\sqrt{3}}{3\times 10}\sqrt{\frac{2}{5}}
Multiply \sqrt{10} and \sqrt{10} to get 10.
4\times \frac{10\times 5\sqrt{3}}{30}\sqrt{\frac{2}{5}}
Multiply 3 and 10 to get 30.
4\times \frac{50\sqrt{3}}{30}\sqrt{\frac{2}{5}}
Multiply 10 and 5 to get 50.
4\times \frac{5}{3}\sqrt{3}\sqrt{\frac{2}{5}}
Divide 50\sqrt{3} by 30 to get \frac{5}{3}\sqrt{3}.
\frac{4\times 5}{3}\sqrt{3}\sqrt{\frac{2}{5}}
Express 4\times \frac{5}{3} as a single fraction.
\frac{20}{3}\sqrt{3}\sqrt{\frac{2}{5}}
Multiply 4 and 5 to get 20.
\frac{20}{3}\sqrt{3}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{20}{3}\sqrt{3}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{20}{3}\sqrt{3}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{20}{3}\sqrt{3}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{20\sqrt{10}}{3\times 5}\sqrt{3}
Multiply \frac{20}{3} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4\sqrt{10}}{3}\sqrt{3}
Cancel out 5 in both numerator and denominator.
\frac{4\sqrt{10}\sqrt{3}}{3}
Express \frac{4\sqrt{10}}{3}\sqrt{3} as a single fraction.
\frac{4\sqrt{30}}{3}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}