Evaluate
\frac{20\sqrt{7}}{3}\approx 17.638342074
Share
Copied to clipboard
4\times \frac{\sqrt{\frac{9+1}{3}}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Multiply 3 and 3 to get 9.
4\times \frac{\sqrt{\frac{10}{3}}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Add 9 and 1 to get 10.
4\times \frac{\frac{\sqrt{10}}{\sqrt{3}}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{10}{3}} as the division of square roots \frac{\sqrt{10}}{\sqrt{3}}.
4\times \frac{\frac{\sqrt{10}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\times \frac{\frac{\sqrt{10}\sqrt{3}}{3}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
4\times \frac{\frac{\sqrt{30}}{3}}{\frac{2}{5}}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
4\times \frac{\sqrt{30}\times 5}{3\times 2}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Divide \frac{\sqrt{30}}{3} by \frac{2}{5} by multiplying \frac{\sqrt{30}}{3} by the reciprocal of \frac{2}{5}.
4\times \frac{\sqrt{30}\times 5}{6}\sqrt{\frac{2\times 3+1}{3}}\sqrt{\frac{2}{5}}
Multiply 3 and 2 to get 6.
4\times \frac{\sqrt{30}\times 5}{6}\sqrt{\frac{6+1}{3}}\sqrt{\frac{2}{5}}
Multiply 2 and 3 to get 6.
4\times \frac{\sqrt{30}\times 5}{6}\sqrt{\frac{7}{3}}\sqrt{\frac{2}{5}}
Add 6 and 1 to get 7.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{7}}{\sqrt{3}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{7}\sqrt{3}}{3}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\sqrt{\frac{2}{5}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
4\times \frac{\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\sqrt{30}\times 5}{6}\times \frac{\sqrt{21}}{3}\times \frac{\sqrt{10}}{5}
Express 4\times \frac{\sqrt{30}\times 5}{6} as a single fraction.
\frac{4\sqrt{30}\times 5\sqrt{21}}{6\times 3}\times \frac{\sqrt{10}}{5}
Multiply \frac{4\sqrt{30}\times 5}{6} times \frac{\sqrt{21}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times 5\sqrt{21}\sqrt{30}}{3\times 3}\times \frac{\sqrt{10}}{5}
Cancel out 2 in both numerator and denominator.
\frac{2\times 5\sqrt{21}\sqrt{30}\sqrt{10}}{3\times 3\times 5}
Multiply \frac{2\times 5\sqrt{21}\sqrt{30}}{3\times 3} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{10}\sqrt{21}\sqrt{30}}{3\times 3}
Cancel out 5 in both numerator and denominator.
\frac{2\sqrt{10}\sqrt{21}\sqrt{10}\sqrt{3}}{3\times 3}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
\frac{2\times 10\sqrt{21}\sqrt{3}}{3\times 3}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{2\times 10\sqrt{3}\sqrt{7}\sqrt{3}}{3\times 3}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
\frac{2\times 10\times 3\sqrt{7}}{3\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{20\times 3\sqrt{7}}{3\times 3}
Multiply 2 and 10 to get 20.
\frac{60\sqrt{7}}{3\times 3}
Multiply 20 and 3 to get 60.
\frac{60\sqrt{7}}{9}
Multiply 3 and 3 to get 9.
\frac{20}{3}\sqrt{7}
Divide 60\sqrt{7} by 9 to get \frac{20}{3}\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}