Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\sqrt{\frac{6+1}{2}}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply 3 and 2 to get 6.
\frac{\sqrt{\frac{7}{2}}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Add 6 and 1 to get 7.
\frac{\frac{\sqrt{7}}{\sqrt{2}}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{7}{2}} as the division of square roots \frac{\sqrt{7}}{\sqrt{2}}.
\frac{\frac{\sqrt{7}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{7}\sqrt{2}}{2}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\sqrt{\frac{1\times 7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\sqrt{\frac{7+4}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Multiply 1 and 7 to get 7.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\sqrt{\frac{11}{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Add 7 and 4 to get 11.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\times \frac{\sqrt{11}}{\sqrt{7}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{11}{7}} as the division of square roots \frac{\sqrt{11}}{\sqrt{7}}.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\times \frac{\sqrt{11}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\times \frac{\sqrt{11}\sqrt{7}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
The square of \sqrt{7} is 7.
\frac{\frac{\sqrt{14}}{2}\left(-8\right)\times \frac{\sqrt{77}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\frac{-4\sqrt{14}\times \frac{\sqrt{77}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Cancel out 2, the greatest common factor in 8 and 2.
\frac{\frac{-4\sqrt{14}\sqrt{77}}{7}}{\frac{1}{2}}\sqrt{\frac{5\times 2+1}{2}}
Express -4\sqrt{14}\times \frac{\sqrt{77}}{7} as a single fraction.
\frac{-4\sqrt{14}\sqrt{77}\times 2}{7}\sqrt{\frac{5\times 2+1}{2}}
Divide \frac{-4\sqrt{14}\sqrt{77}}{7} by \frac{1}{2} by multiplying \frac{-4\sqrt{14}\sqrt{77}}{7} by the reciprocal of \frac{1}{2}.
\frac{-8\sqrt{14}\sqrt{77}}{7}\sqrt{\frac{5\times 2+1}{2}}
Multiply -4 and 2 to get -8.
\frac{-8\sqrt{1078}}{7}\sqrt{\frac{5\times 2+1}{2}}
To multiply \sqrt{14} and \sqrt{77}, multiply the numbers under the square root.
\frac{-8\sqrt{1078}}{7}\sqrt{\frac{10+1}{2}}
Multiply 5 and 2 to get 10.
\frac{-8\sqrt{1078}}{7}\sqrt{\frac{11}{2}}
Add 10 and 1 to get 11.
\frac{-8\sqrt{1078}}{7}\times \frac{\sqrt{11}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{11}{2}} as the division of square roots \frac{\sqrt{11}}{\sqrt{2}}.
\frac{-8\sqrt{1078}}{7}\times \frac{\sqrt{11}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-8\sqrt{1078}}{7}\times \frac{\sqrt{11}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{-8\sqrt{1078}}{7}\times \frac{\sqrt{22}}{2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{-8\sqrt{1078}\sqrt{22}}{7\times 2}
Multiply \frac{-8\sqrt{1078}}{7} times \frac{\sqrt{22}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-4\sqrt{22}\sqrt{1078}}{7}
Cancel out 2 in both numerator and denominator.
\frac{-4\sqrt{22}\sqrt{22}\sqrt{49}}{7}
Factor 1078=22\times 49. Rewrite the square root of the product \sqrt{22\times 49} as the product of square roots \sqrt{22}\sqrt{49}.
\frac{-4\times 22\sqrt{49}}{7}
Multiply \sqrt{22} and \sqrt{22} to get 22.
\frac{-88\sqrt{49}}{7}
Multiply -4 and 22 to get -88.
\frac{-88\times 7}{7}
Calculate the square root of 49 and get 7.
\frac{-616}{7}
Multiply -88 and 7 to get -616.
-88
Divide -616 by 7 to get -88.