Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3+\left(1-a\right)^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3+1-2a+a^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-a\right)^{2}.
\left(\sqrt{4-2a+a^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 3 and 1 to get 4.
\left(\sqrt{4-2a+a^{2}+4-4b+b^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2-b\right)^{2}.
\left(\sqrt{8-2a+a^{2}-4b+b^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Calculate \sqrt{8-2a+a^{2}-4b+b^{2}} to the power of 2 and get 8-2a+a^{2}-4b+b^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{4+4+4a+a^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-a\right)^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{8+4a+a^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{8+4a+a^{2}+4+4b+b^{2}}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(-2-b\right)^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{12+4a+a^{2}+4b+b^{2}}\right)^{2}
Add 8 and 4 to get 12.
8-2a+a^{2}-4b+b^{2}=12+4a+a^{2}+4b+b^{2}
Calculate \sqrt{12+4a+a^{2}+4b+b^{2}} to the power of 2 and get 12+4a+a^{2}+4b+b^{2}.
8-2a+a^{2}-4b+b^{2}-4a=12+a^{2}+4b+b^{2}
Subtract 4a from both sides.
8-6a+a^{2}-4b+b^{2}=12+a^{2}+4b+b^{2}
Combine -2a and -4a to get -6a.
8-6a+a^{2}-4b+b^{2}-a^{2}=12+4b+b^{2}
Subtract a^{2} from both sides.
8-6a-4b+b^{2}=12+4b+b^{2}
Combine a^{2} and -a^{2} to get 0.
-6a-4b+b^{2}=12+4b+b^{2}-8
Subtract 8 from both sides.
-6a-4b+b^{2}=4+4b+b^{2}
Subtract 8 from 12 to get 4.
-6a+b^{2}=4+4b+b^{2}+4b
Add 4b to both sides.
-6a+b^{2}=4+8b+b^{2}
Combine 4b and 4b to get 8b.
-6a=4+8b+b^{2}-b^{2}
Subtract b^{2} from both sides.
-6a=4+8b
Combine b^{2} and -b^{2} to get 0.
-6a=8b+4
The equation is in standard form.
\frac{-6a}{-6}=\frac{8b+4}{-6}
Divide both sides by -6.
a=\frac{8b+4}{-6}
Dividing by -6 undoes the multiplication by -6.
a=\frac{-4b-2}{3}
Divide 4+8b by -6.
\sqrt{3+\left(1-\frac{-4b-2}{3}\right)^{2}+\left(2-b\right)^{2}}=\sqrt{4+\left(-2-\frac{-4b-2}{3}\right)^{2}+\left(-2-b\right)^{2}}
Substitute \frac{-4b-2}{3} for a in the equation \sqrt{3+\left(1-a\right)^{2}+\left(2-b\right)^{2}}=\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}.
\frac{1}{3}\left(88+25b^{2}+4b\right)^{\frac{1}{2}}=\frac{1}{3}\left(88+25b^{2}+4b\right)^{\frac{1}{2}}
Simplify. The value a=\frac{-4b-2}{3} satisfies the equation.
a=\frac{-4b-2}{3}
Equation \sqrt{\left(1-a\right)^{2}+\left(2-b\right)^{2}+3}=\sqrt{\left(-a-2\right)^{2}+\left(-b-2\right)^{2}+4} has a unique solution.
\left(\sqrt{3+\left(1-a\right)^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3+1-2a+a^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-a\right)^{2}.
\left(\sqrt{4-2a+a^{2}+\left(2-b\right)^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 3 and 1 to get 4.
\left(\sqrt{4-2a+a^{2}+4-4b+b^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-b\right)^{2}.
\left(\sqrt{8-2a+a^{2}-4b+b^{2}}\right)^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}\right)^{2}
Calculate \sqrt{8-2a+a^{2}-4b+b^{2}} to the power of 2 and get 8-2a+a^{2}-4b+b^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{4+4+4a+a^{2}+\left(-2-b\right)^{2}}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(-2-a\right)^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{8+4a+a^{2}+\left(-2-b\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{8+4a+a^{2}+4+4b+b^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-b\right)^{2}.
8-2a+a^{2}-4b+b^{2}=\left(\sqrt{12+4a+a^{2}+4b+b^{2}}\right)^{2}
Add 8 and 4 to get 12.
8-2a+a^{2}-4b+b^{2}=12+4a+a^{2}+4b+b^{2}
Calculate \sqrt{12+4a+a^{2}+4b+b^{2}} to the power of 2 and get 12+4a+a^{2}+4b+b^{2}.
8-2a+a^{2}-4b+b^{2}-4b=12+4a+a^{2}+b^{2}
Subtract 4b from both sides.
8-2a+a^{2}-8b+b^{2}=12+4a+a^{2}+b^{2}
Combine -4b and -4b to get -8b.
8-2a+a^{2}-8b+b^{2}-b^{2}=12+4a+a^{2}
Subtract b^{2} from both sides.
8-2a+a^{2}-8b=12+4a+a^{2}
Combine b^{2} and -b^{2} to get 0.
-2a+a^{2}-8b=12+4a+a^{2}-8
Subtract 8 from both sides.
-2a+a^{2}-8b=4+4a+a^{2}
Subtract 8 from 12 to get 4.
a^{2}-8b=4+4a+a^{2}+2a
Add 2a to both sides.
a^{2}-8b=4+6a+a^{2}
Combine 4a and 2a to get 6a.
-8b=4+6a+a^{2}-a^{2}
Subtract a^{2} from both sides.
-8b=4+6a
Combine a^{2} and -a^{2} to get 0.
-8b=6a+4
The equation is in standard form.
\frac{-8b}{-8}=\frac{6a+4}{-8}
Divide both sides by -8.
b=\frac{6a+4}{-8}
Dividing by -8 undoes the multiplication by -8.
b=-\frac{3a}{4}-\frac{1}{2}
Divide 4+6a by -8.
\sqrt{3+\left(1-a\right)^{2}+\left(2-\left(-\frac{3a}{4}-\frac{1}{2}\right)\right)^{2}}=\sqrt{4+\left(-2-a\right)^{2}+\left(-2-\left(-\frac{3a}{4}-\frac{1}{2}\right)\right)^{2}}
Substitute -\frac{3a}{4}-\frac{1}{2} for b in the equation \sqrt{3+\left(1-a\right)^{2}+\left(2-b\right)^{2}}=\sqrt{4+\left(-2-a\right)^{2}+\left(-2-b\right)^{2}}.
\frac{1}{4}\left(164+25a^{2}+28a\right)^{\frac{1}{2}}=\frac{1}{4}\left(164+25a^{2}+28a\right)^{\frac{1}{2}}
Simplify. The value b=-\frac{3a}{4}-\frac{1}{2} satisfies the equation.
b=-\frac{3a}{4}-\frac{1}{2}
Equation \sqrt{\left(1-a\right)^{2}+\left(2-b\right)^{2}+3}=\sqrt{\left(-a-2\right)^{2}+\left(-b-2\right)^{2}+4} has a unique solution.