Solve for a
a=\frac{\sqrt{\frac{29}{b}}}{2}
b>0
Solve for b
b=\frac{29}{4a^{2}}
a>0
Share
Copied to clipboard
\frac{\sqrt{29}}{\sqrt{4}}=a\sqrt{b}
Rewrite the square root of the division \sqrt{\frac{29}{4}} as the division of square roots \frac{\sqrt{29}}{\sqrt{4}}.
\frac{\sqrt{29}}{2}=a\sqrt{b}
Calculate the square root of 4 and get 2.
a\sqrt{b}=\frac{\sqrt{29}}{2}
Swap sides so that all variable terms are on the left hand side.
2a\sqrt{b}=\sqrt{29}
Multiply both sides of the equation by 2.
2\sqrt{b}a=\sqrt{29}
The equation is in standard form.
\frac{2\sqrt{b}a}{2\sqrt{b}}=\frac{\sqrt{29}}{2\sqrt{b}}
Divide both sides by 2\sqrt{b}.
a=\frac{\sqrt{29}}{2\sqrt{b}}
Dividing by 2\sqrt{b} undoes the multiplication by 2\sqrt{b}.
a=\frac{29}{2\sqrt{29b}}
Divide \sqrt{29} by 2\sqrt{b}.
\frac{\sqrt{29}}{\sqrt{4}}=a\sqrt{b}
Rewrite the square root of the division \sqrt{\frac{29}{4}} as the division of square roots \frac{\sqrt{29}}{\sqrt{4}}.
\frac{\sqrt{29}}{2}=a\sqrt{b}
Calculate the square root of 4 and get 2.
a\sqrt{b}=\frac{\sqrt{29}}{2}
Swap sides so that all variable terms are on the left hand side.
2a\sqrt{b}=\sqrt{29}
Multiply both sides of the equation by 2.
\frac{2a\sqrt{b}}{2a}=\frac{\sqrt{29}}{2a}
Divide both sides by 2a.
\sqrt{b}=\frac{\sqrt{29}}{2a}
Dividing by 2a undoes the multiplication by 2a.
b=\frac{29}{4a^{2}}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}