Solve for n
n=18
Share
Copied to clipboard
\left(\sqrt{28-n}\right)^{2}=\left(\sqrt{n-8}\right)^{2}
Square both sides of the equation.
28-n=\left(\sqrt{n-8}\right)^{2}
Calculate \sqrt{28-n} to the power of 2 and get 28-n.
28-n=n-8
Calculate \sqrt{n-8} to the power of 2 and get n-8.
28-n-n=-8
Subtract n from both sides.
28-2n=-8
Combine -n and -n to get -2n.
-2n=-8-28
Subtract 28 from both sides.
-2n=-36
Subtract 28 from -8 to get -36.
n=\frac{-36}{-2}
Divide both sides by -2.
n=18
Divide -36 by -2 to get 18.
\sqrt{28-18}=\sqrt{18-8}
Substitute 18 for n in the equation \sqrt{28-n}=\sqrt{n-8}.
10^{\frac{1}{2}}=10^{\frac{1}{2}}
Simplify. The value n=18 satisfies the equation.
n=18
Equation \sqrt{28-n}=\sqrt{n-8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}