Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{3}-\frac{1}{3}\sqrt{18}-\sqrt{\frac{16}{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}-\frac{1}{3}\times 3\sqrt{2}-\sqrt{\frac{16}{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
3\sqrt{3}-\sqrt{2}-\sqrt{\frac{16}{3}}
Cancel out 3 and 3.
3\sqrt{3}-\sqrt{2}-\frac{\sqrt{16}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{16}{3}} as the division of square roots \frac{\sqrt{16}}{\sqrt{3}}.
3\sqrt{3}-\sqrt{2}-\frac{4}{\sqrt{3}}
Calculate the square root of 16 and get 4.
3\sqrt{3}-\sqrt{2}-\frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\sqrt{3}-\sqrt{2}-\frac{4\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\left(3\sqrt{3}-\sqrt{2}\right)}{3}-\frac{4\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{3}-\sqrt{2} times \frac{3}{3}.
\frac{3\left(3\sqrt{3}-\sqrt{2}\right)-4\sqrt{3}}{3}
Since \frac{3\left(3\sqrt{3}-\sqrt{2}\right)}{3} and \frac{4\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{9\sqrt{3}-3\sqrt{2}-4\sqrt{3}}{3}
Do the multiplications in 3\left(3\sqrt{3}-\sqrt{2}\right)-4\sqrt{3}.
\frac{5\sqrt{3}-3\sqrt{2}}{3}
Do the calculations in 9\sqrt{3}-3\sqrt{2}-4\sqrt{3}.