Solve for x
x=6
Graph
Share
Copied to clipboard
\left(\sqrt{25x-6}\right)^{2}=\left(4\sqrt{x+3}\right)^{2}
Square both sides of the equation.
25x-6=\left(4\sqrt{x+3}\right)^{2}
Calculate \sqrt{25x-6} to the power of 2 and get 25x-6.
25x-6=4^{2}\left(\sqrt{x+3}\right)^{2}
Expand \left(4\sqrt{x+3}\right)^{2}.
25x-6=16\left(\sqrt{x+3}\right)^{2}
Calculate 4 to the power of 2 and get 16.
25x-6=16\left(x+3\right)
Calculate \sqrt{x+3} to the power of 2 and get x+3.
25x-6=16x+48
Use the distributive property to multiply 16 by x+3.
25x-6-16x=48
Subtract 16x from both sides.
9x-6=48
Combine 25x and -16x to get 9x.
9x=48+6
Add 6 to both sides.
9x=54
Add 48 and 6 to get 54.
x=\frac{54}{9}
Divide both sides by 9.
x=6
Divide 54 by 9 to get 6.
\sqrt{25\times 6-6}=4\sqrt{6+3}
Substitute 6 for x in the equation \sqrt{25x-6}=4\sqrt{x+3}.
12=12
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{25x-6}=4\sqrt{x+3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}