Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{6}-\frac{\sqrt{8}}{\sqrt{\frac{2}{3}}}+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}-\sqrt{4}+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Rewrite the division of square roots \frac{\sqrt{8}}{\sqrt{\frac{2}{3}}} as the square root of the division \sqrt{\frac{8}{\frac{2}{3}}} and perform the division.
2\sqrt{6}-2+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Calculate the square root of 4 and get 2.
2\sqrt{6}-2+\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{6}-2+3-\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{6}-2+3-2
The square of \sqrt{2} is 2.
2\sqrt{6}-2+1
Subtract 2 from 3 to get 1.
2\sqrt{6}-1
Add -2 and 1 to get -1.