Evaluate
2\sqrt{6}+1-2\sqrt{3}\approx 2.43487787
Share
Copied to clipboard
2\sqrt{6}-\frac{\sqrt{8}}{\sqrt{\frac{2}{3}}}+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}-\sqrt{4}+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Rewrite the division of square roots \frac{\sqrt{8}}{\sqrt{\frac{2}{3}}} as the square root of the division \sqrt{\frac{8}{\frac{2}{3}}} and perform the division.
2\sqrt{6}-2+\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Calculate the square root of 4 and get 2.
2\sqrt{6}-2+\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{6}-2+3-\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{6}-2+3-2
The square of \sqrt{2} is 2.
2\sqrt{6}-2+1
Subtract 2 from 3 to get 1.
2\sqrt{6}-1
Add -2 and 1 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}