Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{6}\left(-\sqrt{\frac{2}{3}}+3\sqrt{\frac{5}{6}}+\sqrt{5}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}\left(-\frac{\sqrt{2}}{\sqrt{3}}+3\sqrt{\frac{5}{6}}+\sqrt{5}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
2\sqrt{6}\left(-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+3\sqrt{\frac{5}{6}}+\sqrt{5}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{6}\left(-\frac{\sqrt{2}\sqrt{3}}{3}+3\sqrt{\frac{5}{6}}+\sqrt{5}\right)
The square of \sqrt{3} is 3.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+3\sqrt{\frac{5}{6}}+\sqrt{5}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+3\times \frac{\sqrt{5}}{\sqrt{6}}+\sqrt{5}\right)
Rewrite the square root of the division \sqrt{\frac{5}{6}} as the division of square roots \frac{\sqrt{5}}{\sqrt{6}}.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+3\times \frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\sqrt{5}\right)
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+3\times \frac{\sqrt{5}\sqrt{6}}{6}+\sqrt{5}\right)
The square of \sqrt{6} is 6.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+3\times \frac{\sqrt{30}}{6}+\sqrt{5}\right)
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
2\sqrt{6}\left(-\frac{\sqrt{6}}{3}+\frac{\sqrt{30}}{2}+\sqrt{5}\right)
Cancel out 6, the greatest common factor in 3 and 6.
2\sqrt{6}\left(-\frac{2\sqrt{6}}{6}+\frac{3\sqrt{30}}{6}+\sqrt{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply -\frac{\sqrt{6}}{3} times \frac{2}{2}. Multiply \frac{\sqrt{30}}{2} times \frac{3}{3}.
2\sqrt{6}\left(\frac{-2\sqrt{6}+3\sqrt{30}}{6}+\sqrt{5}\right)
Since -\frac{2\sqrt{6}}{6} and \frac{3\sqrt{30}}{6} have the same denominator, add them by adding their numerators.
2\sqrt{6}\left(\frac{-2\sqrt{6}+3\sqrt{30}}{6}+\frac{6\sqrt{5}}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5} times \frac{6}{6}.
2\sqrt{6}\times \frac{-2\sqrt{6}+3\sqrt{30}+6\sqrt{5}}{6}
Since \frac{-2\sqrt{6}+3\sqrt{30}}{6} and \frac{6\sqrt{5}}{6} have the same denominator, add them by adding their numerators.
\frac{-2\sqrt{6}+3\sqrt{30}+6\sqrt{5}}{3}\sqrt{6}
Cancel out 6, the greatest common factor in 2 and 6.
\frac{\left(-2\sqrt{6}+3\sqrt{30}+6\sqrt{5}\right)\sqrt{6}}{3}
Express \frac{-2\sqrt{6}+3\sqrt{30}+6\sqrt{5}}{3}\sqrt{6} as a single fraction.
\frac{-2\left(\sqrt{6}\right)^{2}+3\sqrt{30}\sqrt{6}+6\sqrt{5}\sqrt{6}}{3}
Use the distributive property to multiply -2\sqrt{6}+3\sqrt{30}+6\sqrt{5} by \sqrt{6}.
\frac{-2\times 6+3\sqrt{30}\sqrt{6}+6\sqrt{5}\sqrt{6}}{3}
The square of \sqrt{6} is 6.
\frac{-12+3\sqrt{30}\sqrt{6}+6\sqrt{5}\sqrt{6}}{3}
Multiply -2 and 6 to get -12.
\frac{-12+3\sqrt{6}\sqrt{5}\sqrt{6}+6\sqrt{5}\sqrt{6}}{3}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
\frac{-12+3\times 6\sqrt{5}+6\sqrt{5}\sqrt{6}}{3}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-12+18\sqrt{5}+6\sqrt{5}\sqrt{6}}{3}
Multiply 3 and 6 to get 18.
\frac{-12+18\sqrt{5}+6\sqrt{30}}{3}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.