Evaluate
\sqrt{2}\approx 1.414213562
Share
Copied to clipboard
2\sqrt{6}\sqrt{\frac{1}{3}}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}\times \frac{\sqrt{1}}{\sqrt{3}}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
2\sqrt{6}\times \frac{1}{\sqrt{3}}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
Calculate the square root of 1 and get 1.
2\sqrt{6}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{6}\times \frac{\sqrt{3}}{3}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\sqrt{\frac{1}{8}}\left(1-\sqrt{2}\right)^{0}
Express 2\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{1}}{\sqrt{8}}\left(1-\sqrt{2}\right)^{0}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{1}{\sqrt{8}}\left(1-\sqrt{2}\right)^{0}
Calculate the square root of 1 and get 1.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{1}{2\sqrt{2}}\left(1-\sqrt{2}\right)^{0}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\left(1-\sqrt{2}\right)^{0}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{2}}{2\times 2}\left(1-\sqrt{2}\right)^{0}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{2}}{4}\left(1-\sqrt{2}\right)^{0}
Multiply 2 and 2 to get 4.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{2}}{4}\times 1
Calculate 1-\sqrt{2} to the power of 0 and get 1.
\frac{2\sqrt{3}}{3}\sqrt{6}-4\times \frac{\sqrt{2}}{4}
Multiply 4 and 1 to get 4.
\frac{2\sqrt{3}}{3}\sqrt{6}-\sqrt{2}
Cancel out 4 and 4.
\frac{2\sqrt{3}\sqrt{6}}{3}-\sqrt{2}
Express \frac{2\sqrt{3}}{3}\sqrt{6} as a single fraction.
\frac{2\sqrt{3}\sqrt{6}}{3}-\frac{3\sqrt{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
\frac{2\sqrt{3}\sqrt{6}-3\sqrt{2}}{3}
Since \frac{2\sqrt{3}\sqrt{6}}{3} and \frac{3\sqrt{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{2}-3\sqrt{2}}{3}
Do the multiplications in 2\sqrt{3}\sqrt{6}-3\sqrt{2}.
\frac{3\sqrt{2}}{3}
Do the calculations in 6\sqrt{2}-3\sqrt{2}.
\sqrt{2}
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}